Skip to main content

A Suspension Bridge Problem: Existence and Stability

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 190))

Abstract

In this work, we consider a semilinear problem describing the motion of a suspension bridge in the downward direction in the presence of its hanger restoring force h(u) and a linear damping \(\delta u_t\), where \(\delta >0\) is a constant. By using the semigroup theory, we establish the well posedness. We also use the multiplier method to prove a stability result.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, U.N., Harbi, H.: Mathematical analysis of the dynamics of suspension bridges. SIAM J. Appl. Math. 109, 853–874 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Al-Gwaiz, M., Benci, V., Gazzola, F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. 106, 18–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochicchio, I., Giorgi, C., Vuk3, E.: Long-term damped dynamics of the extensible suspension bridge. Int. J. Differ. Eq. Article ID 383420 (2010)

    Google Scholar 

  4. Choi, Q.H., Jung, T.: A nonlinear suspension equation with nonconstant load. Nonlinear Anal. 35, 649–668 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferrero, A., Gazzola, F.: A partially hinged rectangular plate as a model for suspension bridges. Discrete Continuous Dyn. Syst. 35(12), 5879–5908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gazzola, F.: Nonlinearity in oscillating bridges. Electron. J. Differ. Eq. 211, 1–47 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Filippo, D., Giorgi, C., Pata, V.: Asymptotic behaviour of coupled linear systems modeling suspension bridges. Z. Angew. Math. Phys. 66, 1095–1108 (2015)

    Google Scholar 

  8. Glover, J., Lazer, A.C., Mckenna, P.J.: Existence and stability of of large scale nonlinear oscillation in suspension bridges. Z. Angew. Math. Phys. 40, 172–200 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Imhof, D.: Risk assessment of existing bridge structure. Ph.D. Dissertation, University of Cambridge (2004)

    Google Scholar 

  10. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Paris (1994)

    Google Scholar 

  11. Mansfield, E.H.: The Bending and Stretching of Plates, 2nd edn. Cambridge Univ, Press (2005)

    MATH  Google Scholar 

  12. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with non-linear analysis. SIAM Rev. 32(4), 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. McKenna, P.J.: Torsional oscillations in suspension bridges revisited: fixing an old approximation. Amer. Math. Monthly 106, 1–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. McKenna, P.J., Walter, W.: Non-linear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98(2), 167–177 (1987)

    Article  MATH  Google Scholar 

  15. McKenna, P.J., Walter, W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50(3), 703–715 (1990)

    Google Scholar 

  16. McKenna, P.J., Tuama, C.: Large torsional oscillations in suspension bridges visited again: vertical forcing creates torsional response. Amer. Math. Monthly 108, 738–745 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Navier C.L.: Extraits des recherches sur la flexion des plans élastiques. Bulletin des Sciences de la Société Philomathique de Paris 92–102 (1823)

    Google Scholar 

  18. Pazzy, A.: Semigroups of linear operators and application to PDE. Appl. Math. Sci. 44 Springer (1983)

    Google Scholar 

  19. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. Marcel Dekker Inc., New York (2001)

    Book  Google Scholar 

  20. Wang, Y.: Finite time blow-up and global solutions for fourth-order damped wave equations. J. Math. Anal. Appl. 418(2), 713–733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank King Fahd University of Petroleum and Mineral for its continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim A. Messaoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Messaoudi, S.A., Mukiawa, S.E. (2017). A Suspension Bridge Problem: Existence and Stability. In: Abualrub, T., Jarrah, A., Kallel, S., Sulieman, H. (eds) Mathematics Across Contemporary Sciences. AUS-ICMS 2015. Springer Proceedings in Mathematics & Statistics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-46310-0_9

Download citation

Publish with us

Policies and ethics