Skip to main content

Hoffman’s Coclique Bound for Normal Regular Digraphs, and Nonsymmetric Association Schemes

  • Conference paper
  • First Online:
Mathematics Across Contemporary Sciences (AUS-ICMS 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 190))

Included in the following conference series:

Abstract

We extend Hoffman’s coclique bound for regular digraphs with the property that its adjacency matrix is normal, and discuss cocliques attaining the inequality. As a consequence, we characterize skew-Bush-type Hadamard matrices in terms of digraphs. We present some normal digraphs whose vertex set is decomposed into disjoint cocliques attaining the bound. The digraphs provided here are relation graphs of some nonsymmetric association schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouwer, A.E.: Distance regular graphs of diameter \(3\) and strongly regular graphs. Discrete Math. 49, 101–103 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brouwer, A.E., Haemers, W.H.: Spectra of graphs. Universitext. Springer, New York (2012). xiv+250 pp

    Google Scholar 

  3. Chang, Y.: Imprimitive Symmetric Association Schemes of Rank 4. University of Michigan, Thesis (1994)

    Google Scholar 

  4. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980)

    Google Scholar 

  5. Goldbach, R.W., Claasen, H.L.: \(3\)-class association schemes and Hadamard matrices of a certain block form. Europ. J. Combin. 19, 943–951 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haemers, W.H., Tonchev, V.D.: Spreads in strongly regular graphs. Des. Codes Crypt. 8, 145–157 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Holzmann, W.H., Kharaghani, H., Suda, S.: Mutually unbiased biangular vectors and association schemes. In Colbourn, C. J. (ed.) Algebraic Design Theory and Hadamard Matrices, vol. 133, pp. 149–157. Springer International Publishing (2015)

    Google Scholar 

  8. Ionin, Y.J., Kharaghani, H.: Doubly regular digraphs and symmetric designs. J. Combin. Theory Ser. A 101(1), 35–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jorgensen, L.K., Jones, G.A., Klin, M.H., Song, S.Y.: Normally regular digraphs, association schemes and related combinatorial structures. Sém. Lothar. Combin. 71, Art. B71c, 39pp (2013/14)

    Google Scholar 

  10. Kharaghani, H.: New class of weighing matrices. Ars. Combin. 19, 69–72 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Kharaghani, H., Sasani,S., Suda, S.: Mutually unbiased Bush-type Hadamard matrices and association schemes. Elec. J. Combin. 22 P3. 10 (2015)

    Google Scholar 

  12. Muzychuk, M., Xiang, Q.: Symmetric Bush-type Hadamard matrices of order \(4m^4\) exist for all odd \(m\). Proc. Amer. Math. Soc. 134(8), 2197–2204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wallis, W.D.: On a problem of K. A. Bush concerning Hadamard matrices. Bull. Aust. Math. Soc. 6, 321–326 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Hadi Kharaghani is supported by an NSERC Discovery Grant. Sho Suda is supported by JSPS KAKENHI Grant Number 15K21075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Kharaghani .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Parameters of the association Scheme in Theorem 5.3(i)

$$\begin{aligned} B_1&=\begin{pmatrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ \frac{n^2-2n}{2} &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2-4n}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n}{4}-1 &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \end{pmatrix}\\ B_2&=\begin{pmatrix} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2}{4} &{} \frac{n^2-2n}{4} \\ \frac{n^2-2n}{2} &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2-4n}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n}{4} &{} \frac{n-4}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \end{pmatrix}\\ B_3&=\begin{pmatrix} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} \frac{n}{4}-1 &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4}-1 &{} 0 &{} 0 \\ \frac{n}{2}-1 &{} 0 &{} 0 &{} \frac{n}{2}-2 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{n}{2}-1 \end{pmatrix}\\ B_4&=\begin{pmatrix} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{n}{2}-1 \\ \frac{n}{2} &{} 0 &{} 0 &{} \frac{n}{2} &{} 0 \end{pmatrix}\\ Q&=\begin{pmatrix} 1 &{} n-1 &{} n-2 &{} \frac{(n-1)(n-2)}{2} &{} \frac{(n-1)(n-2)}{2} \\ 1 &{} 0 &{} -1 &{} -\frac{n-1}{2} &{} \frac{n-1}{2} \\ 1 &{} 0 &{} -1 &{} \frac{n-1}{2} &{} -\frac{n-1}{2} \\ 1 &{} n-1 &{} n-2 &{} -n+1 &{} -n+1 \\ 1 &{} -n+1 &{} n-2 &{} 0 &{} 0 \end{pmatrix} \end{aligned}$$

Appendix 2: Parameters of the Association Scheme in Theorem 5.3(ii)

$$\begin{aligned} B_1&=\begin{pmatrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2}{4} &{} \frac{n^2-2n}{4} \\ \frac{n^2-2n}{2} &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2-4n}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n}{4}-1 &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \end{pmatrix}\\ B_2&=\begin{pmatrix} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ \frac{n^2-2n}{2} &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2-4n}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n^2-3n}{4} &{} \frac{n^2-3n}{4} &{} \frac{n^2}{4} &{} \frac{n^2-2n}{4} \\ 0 &{} \frac{n}{4} &{} \frac{n-4}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \end{pmatrix}\\ B_3&=\begin{pmatrix} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} \frac{n}{4}-1 &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4}-1 &{} 0 &{} 0 \\ \frac{n}{2}-1 &{} 0 &{} 0 &{} \frac{n}{2}-2 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{n}{2}-1 \end{pmatrix}\\ B_4&=\begin{pmatrix} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} \frac{n}{4} &{} \frac{n}{4} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{n}{2}-1 \\ \frac{n}{2} &{} 0 &{} 0 &{} \frac{n}{2} &{} 0 \end{pmatrix}\\ Q&=\begin{pmatrix} 1 &{} n-1 &{} n-2 &{} \frac{(n-1)(n-2)}{2} &{} \frac{(n-1)(n-2)}{2} \\ 1 &{} 0 &{} -1 &{} -\frac{\sqrt{-1}(n-1)}{2} &{} \frac{\sqrt{-1}(n-1)}{2} \\ 1 &{} 0 &{} -1 &{} \frac{\sqrt{-1}(n-1)}{2} &{} -\frac{\sqrt{-1}(n-1)}{2} \\ 1 &{} n-1 &{} n-2 &{} -n+1 &{} -n+1 \\ 1 &{} -n+1 &{} n-2 &{} 0 &{} 0 \end{pmatrix} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Kharaghani, H., Suda, S. (2017). Hoffman’s Coclique Bound for Normal Regular Digraphs, and Nonsymmetric Association Schemes. In: Abualrub, T., Jarrah, A., Kallel, S., Sulieman, H. (eds) Mathematics Across Contemporary Sciences. AUS-ICMS 2015. Springer Proceedings in Mathematics & Statistics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-46310-0_8

Download citation

Publish with us

Policies and ethics