Skip to main content

Approximating Numeric Role Fillers via Predictive Clustering Trees for Knowledge Base Enrichment in the Web of Data

  • Conference paper
  • First Online:
Discovery Science (DS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9956))

Included in the following conference series:

  • 1584 Accesses

Abstract

In the context of the Web of Data, plenty of properties may be used for linking resources to other resources but also to literals that specify their attributes. However the scale and inherent nature of the setting is also characterized by a large amount of missing and incorrect information. To tackle these problems, learning models and rules for predicting unknown values of numeric features can be used for approximating the values and enriching the schema of a knowledge base yielding an increase of the expressiveness, e.g. by eliciting SWRL rules. In this work, we tackle the problem of predicting unknown values and deriving rules concerning numeric features expressed as datatype properties. The task can be cast as a regression problem for which suitable solutions have been devised, for instance, in the related context of RDBs. To this purpose, we adapted learning predictive clustering trees for solving multi-target regression problems in the context of knowledge bases of the Web of Data. The approach has been experimentally evaluated showing interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code and the benchmarks are available at: http://github.com/Giuseppe-Rizzo/DLPredictiveClustering.

  2. 2.

    The ontologies are available also at: http://www.inf.unibz.it/tones/index.php (BCO, monetary), https://datahub.io/dataset (geopolitical), https://github.com/AKSW/DL-Learner/tree/develop/examples/mutagenesis (mutagenesis).

References

  1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool, Palo Alto (2011)

    Google Scholar 

  2. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web. Data Min. Knowl. Discov. 24, 613–662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  4. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000). doi:10.1007/3-540-44960-4_3

    Chapter  Google Scholar 

  5. Fanizzi, N., d’Amato, C., Esposito, F., Minervini, P.: Numeric prediction on OWL knowledge bases through terminological regression trees. Int. J. Semant. Comput. 6, 429–446 (2012)

    Article  MATH  Google Scholar 

  6. Breiman, L., Friedman, J.: Predicting multivariate responses in multiple linear regression. J. Roy. Stat. Soc. 59, 3–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer, Heidelberg (2006). doi:10.1007/11733492_14

    Chapter  Google Scholar 

  8. Struyf, J., Džeroski, S., Blockeel, H., Clare, A.: Hierarchical multi-classification with predictive clustering trees in functional genomics. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 272–283. Springer, Heidelberg (2005). doi:10.1007/11595014_27

    Chapter  Google Scholar 

  9. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 442–457. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15880-3_34

    Chapter  Google Scholar 

  10. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101, 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. WIREs: Data Min. Knowl. Discov. 5, 216–233 (2015)

    Google Scholar 

  12. Aho, T., Ženko, B., Džeroski, S., Elomaa, T.: Multi-target regression with rule ensembles. J. Mach. Learn. Res. 13, 2367–2407 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46, 817–833 (2013)

    Article  Google Scholar 

  14. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Fast and scalable image retrieval using predictive clustering trees. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS (LNAI), vol. 8140, pp. 33–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40897-7_3

    Chapter  Google Scholar 

  15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. Technical report (2004). https://www.w3.org/Submission/SWRL/

  16. Blockeel, H., DeRaedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of ICML1998, pp. 55–63. Morgan Kaufmann (1998)

    Google Scholar 

  17. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\cal ALC\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78469-2_17

    Chapter  Google Scholar 

  18. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Appice, A., Džeroski, S.: Stepwise induction of multi-target model trees. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 502–509. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74958-5_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This work fulfills the objectives of the PON 02005633489339 project “Puglia@Service - Internet-based Service Engineering enabling Smart Territory structural development” funded by the Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F. (2016). Approximating Numeric Role Fillers via Predictive Clustering Trees for Knowledge Base Enrichment in the Web of Data. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46307-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46306-3

  • Online ISBN: 978-3-319-46307-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics