Skip to main content

Clinical Trials and Spinal Cord Injury: Challenges and Therapeutic Interventions

  • Chapter
  • First Online:
Book cover Neurological Aspects of Spinal Cord Injury

Abstract

In SCI, like other diseases, randomized control trials (RCTs) represent the gold standard towards establishing the efficacy of novel treatments. RCTs in SCI present with their own unique set of challenges, including considerable injury heterogeneity, low numbers, variable outcome measures, and ethical concerns. Many of these challenges are compounded by difficulties in translation between animal models and the real human condition. As a consequence, current treatments to improve neurological outcomes after SCI remain limited. In this chapter, we detail many of the challenges of conducting RCTs in SCI, whilst exploring progress of several potential therapies to protect and repair nervous system tissue in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkabie S, Boileau AJ (2016) The role of therapeutic hypothermia after traumatic spinal cord injury-a systematic review. World Neurosurg 86:432–449

    Article  PubMed  Google Scholar 

  2. Assuncao-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ (2015) Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015:948040

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barde Y (2009) Caution urged in trial of stem cells to treat spinal-cord injury. Nature 458:29

    Article  CAS  PubMed  Google Scholar 

  4. Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251:45–52

    Article  CAS  PubMed  Google Scholar 

  5. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411

    Article  CAS  PubMed  Google Scholar 

  6. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, Wagner FC, Flamm ES, Eisenberg HM, Goodman JH (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63:704–713

    Article  CAS  PubMed  Google Scholar 

  7. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    Article  CAS  PubMed  Google Scholar 

  8. Bretzner F, Gilbert F, Baylis F, Brownstone RM (2011) Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8:468–475

    Article  CAS  PubMed  Google Scholar 

  9. Bydon M, Lin J, Macki M, Gokaslan ZL, Bydon A (2014) The current role of steroids in acute spinal cord injury. World Neurosurg 82:848–854

    Article  PubMed  Google Scholar 

  10. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:1224–1236

    Article  PubMed  Google Scholar 

  11. Cengiz SL, Kalkan E, Bayir A, Ilik K, Basefer A (2008) Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg 128:959–966

    Article  PubMed  Google Scholar 

  12. Cragg JJ, Haefeli J, Jutzeler CR, Rohrich F, Weidner N, Saur M, Maier DD, Kalke YB, Schuld C, Curt A, Kramer JK (2016) Effects of pain and pain management on motor recovery of spinal cord-injured patients: a longitudinal study. Neurorehabil Neural Repair 30:753–761

    Article  PubMed  Google Scholar 

  13. Cristante AF, Filho TE, Oliveira RP, Marcon RM, Ferreira R, Santos GB (2013) Effects of antidepressant and treadmill gait training on recovery from spinal cord injury in rats. Spinal Cord 51:501–507

    Article  CAS  PubMed  Google Scholar 

  14. Curt A, Van Hedel HJ, Klaus D, Dietz V, EM-SCI Study Group (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25:677–685

    Article  PubMed  Google Scholar 

  15. Dididze M, Green BA, Dietrich WD, Vanni S, Wang MY, Levi AD (2013) Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 51:395–400

    Article  CAS  PubMed  Google Scholar 

  16. Dietz V, Fouad K (2014) Restoration of sensorimotor functions after spinal cord injury. Brain 137:654–667

    Article  PubMed  Google Scholar 

  17. Eijkholt M, Kwon BK, Mizgalewicz A, Illes J (2012) Decision-making in stem cell trials for spinal cord injury: the role of networks and peers. Regen Med 7:513–522

    Article  CAS  PubMed  Google Scholar 

  18. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205

    Article  CAS  PubMed  Google Scholar 

  19. Fehlings MG, Nakashima H, Nagoshi N, Chow DS, Grossman RG, Kopjar B (2016) Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord 54:8–15

    Article  CAS  PubMed  Google Scholar 

  20. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28:787–796

    Article  PubMed  Google Scholar 

  21. Fehlings MG, Vaccaro A, Wilson JR, Singh A, W Cadotte D, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7:e32037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fehlings MG, Wilson JR, Frankowski RF, Toups EG, Aarabi B, Harrop JS, Shaffrey CI, Harkema SJ, Guest JD, Tator CH, Burau KD, Johnson MW, Grossman RG (2012) Riluzole for the treatment of acute traumatic spinal cord injury: rationale for and design of the NACTN phase I clinical trial. J Neurosurg Spine 17:151–156

    Article  PubMed  Google Scholar 

  23. Filli L, Schwab ME (2015) Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res 10:509–513

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fouad K, Hurd C, Magnuson DS (2013) Functional testing in animal models of spinal cord injury: not as straight forward as one would think. Front Integr Neurosci 7:85

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frantz S (2012) Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol 30:12–13

    Article  CAS  PubMed  Google Scholar 

  26. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2009) Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates – re-examination and extension of behavioral data. Eur J Neurosci 29:983–996

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geisler FH, Coleman WP, Grieco G, Poonian D, Sygen Study Group (2001) The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976) 26:S87–S98

    Article  CAS  Google Scholar 

  28. Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324:1829–1838

    Article  CAS  PubMed  Google Scholar 

  29. Gomes-Osman J, Cortes M, Guest J, Pascual-Leone A (2016) A systematic review of experimental strategies aimed at improving motor function after acute and chronic spinal cord injury. J Neurotrauma 33:425–438

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gonzenbach RR, Zoerner B, Schnell L, Weinmann O, Mir AK, Schwab ME (2012) Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. J Neurotrauma 29:567–578

    Article  PubMed  Google Scholar 

  31. Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2014) A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma 31:239–255

    Article  PubMed  PubMed Central  Google Scholar 

  32. Houle JD, Tessler A (2003) Repair of chronic spinal cord injury. Exp Neurol 182:247–260

    Article  PubMed  Google Scholar 

  33. Hug A, Weidner N (2012) From bench to beside to cure spinal cord injury: lost in translation? Int Rev Neurobiol 106:173–196

    Article  CAS  PubMed  Google Scholar 

  34. Hwang DH, Shin HY, Kwon MJ, Choi JY, Ryu BY, Kim BG (2014) Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J Neurosci 34:12788–12800

    Article  PubMed  Google Scholar 

  35. Jones LA, Lammertse DP, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Poonian D, Betz RR, Knoller N, Heary RF, Choudhri TF, Jenkins AL 3rd, Falci SP, Snyder DA (2010) A phase 2 autologous cellular therapy trial in patients with acute, complete spinal cord injury: pragmatics, recruitment, and demographics. Spinal Cord 48:798–807

    Article  CAS  PubMed  Google Scholar 

  36. Kabu S, Gao Y, Kwon BK, Labhasetwar V (2015) Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 219:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaiser J (2011) Embryonic stem cells. Researchers mull impact of Geron’s sudden exit from field. Science 334:1043

    Article  PubMed  Google Scholar 

  38. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, Marder JB, Yoles E, Belkin M, Schwartz M, Hadani M (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181

    Article  PubMed  Google Scholar 

  39. Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7:e52787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kramer JL, Curt A (2012) When is the time right for a phase III clinical study in spinal cord injury (P = 0.05)? Brain 135:e220; author reply e221

    Article  PubMed  Google Scholar 

  41. Kramer JL, Lammertse DP, Schubert M, Curt A, Steeves JD (2012) Relationship between motor recovery and independence after sensorimotor-complete cervical spinal cord injury. Neurorehabil Neural Repair 26:1064–1071

    Article  PubMed  Google Scholar 

  42. Lammertse DP (2013) Clinical trials in spinal cord injury: lessons learned on the path to translation. The 2011 International Spinal Cord Society Sir Ludwig Guttmann Lecture. Spinal Cord 51:2–9

    Article  CAS  PubMed  Google Scholar 

  43. Lammertse DP, Jones LA, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50:661–671

    Article  CAS  PubMed  Google Scholar 

  44. Lammertse D, Tuszynski MH, Steeves JD, Curt A, Fawcett JW, Rask C, Ditunno JF, Fehlings MG, Guest JD, Ellaway PH, Kleitman N, Blight AR, Dobkin BH, Grossman R, Katoh H, Privat A, Kalichman M, International Campaign for Cures of Spinal Cord Injury Paralysis (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 45:232–242

    Article  CAS  PubMed  Google Scholar 

  45. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, Maia CA, Capucho C, Hasse-Ferreira A, Peduzzi JD (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24:10–22

    Article  PubMed  Google Scholar 

  46. Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, Stagg M, Abril RM, Patel S, Dietrich WD, Pearse DD (2009) Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 514:433–448

    Article  PubMed  Google Scholar 

  47. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S, Geraghty T (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131:2376–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maybhate A, Hu C, Bazley FA, Yu Q, Thakor NV, Kerr CL, All AH (2012) Potential long-term benefits of acute hypothermia after spinal cord injury: assessments with somatosensory-evoked potentials. Crit Care Med 40:573–579

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nagoshi N, Fehlings MG (2015) Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from phase I to II. Expert Opin Investig Drugs 24:645–658

    Article  CAS  PubMed  Google Scholar 

  50. Popovich PG, Tovar CA, Lemeshow S, Yin Q, Jakeman LB (2014) Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Exp Neurol 261:97–108

    Article  CAS  PubMed  Google Scholar 

  51. Ramer LM, Ramer MS, Bradbury EJ (2014) Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol 13:1241–1256

    Article  PubMed  Google Scholar 

  52. Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR (2012) Translational spinal cord injury research: preclinical guidelines and challenges. Handb Clin Neurol 109:411–433

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schwab JM (2014) Enabling motor control in chronic spinal cord injury: found in translation. Brain 137:1277–1280

    Article  PubMed  Google Scholar 

  54. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57

    Article  PubMed  Google Scholar 

  55. Steeves JD (2015) Bench to bedside: challenges of clinical translation. Prog Brain Res 218:227–239

    Article  PubMed  Google Scholar 

  56. Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR, Marino RJ, Ditunno JF Jr, Coleman WP, Geisler FH, Guest J, Jones L, Burns S, Schubert M, van Hedel HJ, Curt A, EMSCI Study Group (2011) Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49:257–265

    Article  CAS  PubMed  Google Scholar 

  57. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, Ellaway PH, Fehlings MG, Guest JD, Kleitman N, Bartlett PF, Blight AR, Dietz V, Dobkin BH, Grossman R, Short D, Nakamura M, Coleman WP, Gaviria M, Privat A, International Campaign for Cures of Spinal Cord Injury Paralysis (2007) Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45:206–221

    Article  CAS  PubMed  Google Scholar 

  58. Tadie M, Gaviria M, Mathe J, Menthonnex P, Loubert G, Lagarrigue J, Saint-Marc C, Argenson C, Kempf C, d’Arbigny P, J-M Kamenka P, Privat A, Carli P (2003) Early care and treatment with a neuroprotective drug, Gacyclidine, in patients with acute spinal cord injury. Rachis 15:363

    Google Scholar 

  59. Tanadini L, Hothorn T, Steeves J, Curt A (2013) Recursive partitioning improves outcome prediction and stratification of patients with spinal cord Injury. J Neurol 260:S97

    Google Scholar 

  60. Tuszynski MH, Steeves JD, Fawcett JW, Lammertse D, Kalichman M, Rask C, Curt A, Ditunno JF, Fehlings MG, Guest JD, Ellaway PH, Kleitman N, Bartlett PF, Blight AR, Dietz V, Dobkin BH, Grossman R, Privat A, International Campaign for Cures of Spinal Cord Injury Paralysis (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 45:222–231

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Pearse DD (2015) Therapeutic hypothermia in spinal cord injury: the status of its use and open questions. Int J Mol Sci 16:16848–16879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilson JR, Forgione N, Fehlings MG (2013) Emerging therapies for acute traumatic spinal cord injury. CMAJ 185:485–492

    Article  PubMed  PubMed Central  Google Scholar 

  63. Witiw CD, Fehlings MG (2015) Acute spinal cord injury. J Spinal Disord Tech 28:202–210

    Article  PubMed  Google Scholar 

  64. Wu X, Liu J, Tanadini LG, Lammertse DP, Blight AR, Kramer JL, Scivoletto G, Jones L, Kirshblum S, Abel R, Fawcett J, Field-Fote E, Guest J, Levinson B, Maier D, Tansey K, Weidner N, Tetzlaff WG, Hothorn T, Curt A, Steeves JD (2015) Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord 53:84–91

    Article  CAS  PubMed  Google Scholar 

  65. Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, Castro S, Yezierski RP (2000) Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. J Neurosurg 93:85–93

    CAS  PubMed  Google Scholar 

  66. Zariffa J, Kramer JL, Jones LA, Lammertse DP, Curt A, European Multicenter Study about Spinal Cord Injury Study Group, Steeves JD (2012) Sacral sparing in SCI: beyond the S4–S5 and anorectal examination. Spine J 12:389–400.e3

    Google Scholar 

  67. Zhao RR, Andrews MR, Wang D, Warren P, Gullo M, Schnell L, Schwab ME, Fawcett JW (2013) Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci 38:2946–2961

    PubMed  Google Scholar 

  68. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198(Suppl 1):E22–E34

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. K. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warner, F.M., Cragg, J.J., Steeves, J.D., Kramer, J.L.K. (2017). Clinical Trials and Spinal Cord Injury: Challenges and Therapeutic Interventions. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics