Skip to main content

Neurorehabilitation: Strategies of Lower Extremities Restoration

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury

Abstract

Treatment of acute spinal cord injury (SCI) comprises two major therapeutic concepts, which aim for either restoration or compensation. Both strategies aim to reach the highest level of quality of life, mainly reflected by independence and participation in social activities. Restoration in this context means to recover sensorimotor function, which has been impaired or abolished by an incomplete spinal cord or cauda equine lesion. Therefore, only in patients with spared sensorimotor axon pathways restorative strategies can be successfully employed. In contrast, compensation means to replace irreversibly lost function through an alternative strategy, e.g., wheelchair mobility will substitute for the mobility achieved through walking. A number of excellent textbooks describe compensatory strategies in SCI rehabilitation in detail. This chapter will focus on therapies to promote recovery of walking function.

In order to choose appropriate rehabilitative treatment strategies, a precise definition of realistic goals to be achieved in each patient is of utmost importance. Respective goals can only be determined once neurological dysfunction and functional deficits are properly assessed. Therefore, effective goal setting approaches and internationally accepted neurological and functional assessment schemes will be described. Accordingly, task specific therapies (e.g., body weight supported treadmill training), supporting therapies (conventional physical therapy targeting muscle strength, balance and trunk stability, functional electrical stimulation) and orthotic devices including wearable exoskeletons will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wessels M, Lucas C, Eriks I, de Groot S (2010) Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 42(6):513–519

    Article  PubMed  Google Scholar 

  2. WHO (2005) Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit. Herausgegeben vom Deutschen Institut fĂ¼r Medizinische Dokumentation und Information, DIMDI, WHO-Koorperationspartner fĂ¼r das System Internationaler Klassifikationen. World Health Organization, Geneva

    Google Scholar 

  3. Harkema S, Behrman A, Barbeau H (2012) Evidence-based therapy for recovery of function after spinal cord injury. Handb Clin Neurol 109:259–274

    Article  PubMed  Google Scholar 

  4. Teeter L, Gassaway J, Taylor S, LaBarbera J, McDowell S, Backus D, Zanca JM, Natale A, Cabrera J, Smout RJ, Kreider SE, Whiteneck G (2012) Relationship of physical therapy inpatient rehabilitation interventions and patient characteristics to outcomes following spinal cord injury: the SCIRehab project. J Spinal Cord Med 35(6):503–526

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wirz M, Colombo G, Dietz V (2001) Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry 71(1):93–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silver J, Ljungberg I, Libin A, Groah S (2012) Barriers for individuals with spinal cord injury returning to the community: a preliminary classification. Disabil Health J 5(3):190–196

    Article  PubMed  Google Scholar 

  7. Gomara-Toldra N, Sliwinski M, Dijkers MP (2014) Physical therapy after spinal cord injury: a systematic review of treatments focused on participation. J Spinal Cord Med 37(4):371–379

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sand A, Karlberg I, Kreuter M (2006) Spinal cord injured persons’ conceptions of hospital care, rehabilitation, and a new life situation. Scand J Occup Ther 13(3):183–192

    Article  PubMed  Google Scholar 

  9. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34(6):535–546

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kirshblum SC, Biering-Sorensen F, Betz R, Burns S, Donovan W, Graves DE, Johansen M, Jones L, Mulcahey MJ, Rodriguez GM, Schmidt-Read M, Steeves JD, Tansey K, Waring W (2014) International standards for neurological classification of spinal cord injury: cases with classification challenges. Top Spinal Cord Inj Rehabil 20(2):81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. http://www.asia-spinalinjury.org . American Spinal Injury Association, 2016

  12. Janda V (1984) Muskelfunktionsdiagnostik. Verlag Acco Leuven/Belgien

    Google Scholar 

  13. Rastislav Pjontek FS, Julia Tabatabai, Hannes Hudalla, Patrick Riedmaier (2013) Heidelberger Standarduntersuchungen. Vol. 2. Auflage. Medizinische Fakultät Heidelberg/Germany

    Google Scholar 

  14. Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67(2):206–207

    Article  CAS  PubMed  Google Scholar 

  15. Priebe MM, Sherwood AM, Thornby JI, Kharas NF, Markowski J (1996) Clinical assessment of spasticity in spinal cord injury: a multidimensional problem. Arch Phys Med Rehabil 77(7):713–716

    Article  CAS  PubMed  Google Scholar 

  16. Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergstrom EM, Bluvshtein V, Ronen J (2007) A multicenter international study on the Spinal Cord Independence Measure, version III: Rasch psychometric validation. Spinal Cord 45(4):275–291

    CAS  PubMed  Google Scholar 

  17. Catz A, Itzkovich M (2007) Spinal Cord Independence Measure: comprehensive ability rating scale for the spinal cord lesion patient. J Rehabil Res Dev 44(1):65–68

    Article  PubMed  Google Scholar 

  18. http://www.scireproject.com (2010) ©2010 SCIRE Project/Monkey Hill Health Communications

  19. Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, Downey PA, Ruhl CD (2001) The Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI). J Rehabil Med 33(4):177–181

    Article  CAS  PubMed  Google Scholar 

  20. Dittuno PL, Ditunno JF Jr (2001) Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord 39(12):654–656

    Article  CAS  PubMed  Google Scholar 

  21. Lam T, Noonan VK, Eng JJ, Team SR (2008) A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord 46(4):246–254

    Article  CAS  PubMed  Google Scholar 

  22. van Hedel HJ, Wirz M, Curt A (2006) Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness. Spinal Cord 44(6):352–356

    Article  PubMed  Google Scholar 

  23. Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Williams SR, Donovan WH, Gait and Ambulation Subcommittee (2008) Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med 31(5):487–499

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Hedel HJ, Wirz M, Dietz V (2005) Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil 86(2):190–196

    Article  PubMed  Google Scholar 

  25. Tilson JK, Sullivan KJ, Cen SY, Rose DK, Koradia CH, Azen SP, Duncan PW, T. Locomotor Experience Applied Post Stroke Investigative (2010) Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. Phys Ther 90(2):196–208

    Article  PubMed  PubMed Central  Google Scholar 

  26. Datta S, Lorenz DJ, Morrison S, Ardolino E, Harkema SJ (2009) A multivariate examination of temporal changes in Berg Balance Scale items for patients with ASIA Impairment Scale C and D spinal cord injuries. Arch Phys Med Rehabil 90(7):1208–1217

    Article  PubMed  Google Scholar 

  27. Riggins MS, Kankipati P, Oyster ML, Cooper RA, Boninger ML (2011) The relationship between quality of life and change in mobility 1 year postinjury in individuals with spinal cord injury. Arch Phys Med Rehabil 92(7):1027–1033

    Article  PubMed  Google Scholar 

  28. Somers MF (2010) Spinal cord injury functional rehabilitation, 3rd edn. Pearson Educational International, Upper Saddle River

    Google Scholar 

  29. Harvey LA (2008) Management of spinal cord injuries; a guide for physiotherapists. Butterworth-Heinemann, Edinburgh/New York

    Google Scholar 

  30. Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A (1999) Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil 80(2):225–235

    Article  CAS  PubMed  Google Scholar 

  31. Harkema SJ, Hillyer J, Schmidt-Read M, Ardolino E, Sisto SA, Behrman AL (2012) Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch Phys Med Rehabil 93(9):1588–1597

    Article  PubMed  Google Scholar 

  32. Colombo G, Schreier R, Dietz V, Rupp R (2001) Angetriebene Geh-Orthese fĂ¼r automatisiertes Laufbandtraining von inkomplett querschnittgelähmten Patienten. Beiträge zum 3. Workshop Automatisierungstechnische Methoden und Verfahren fĂ¼r die Medizin, pp 50–51

    Google Scholar 

  33. Mehrholz J, Kugler J, Pohl M (2012) Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev (11):CD006676

    Google Scholar 

  34. Brady K, Hidler J, Nichols D, Ryerson S (2011) Clinical training and competency guidelines for using robotic devices. IEEE Int Conf Rehabil Robot 2011:5975378

    CAS  PubMed  Google Scholar 

  35. Colombo G, Schreier R, Mayr A, Plewa H, Rupp R (2005) Novel tilt table with integrated robotic stepping mechanism: design principles and clinical application. in Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on. 2005

    Google Scholar 

  36. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790

    Article  CAS  PubMed  Google Scholar 

  37. Dietz V (1995) Locomotor training in paraplegic patients. Ann Neurol 38(6):965

    Article  CAS  PubMed  Google Scholar 

  38. Czell D, Schreier R, Rupp R, Eberhard S, Colombo G, Dietz V (2004) Influence of passive leg movements on blood circulation on the tilt table in healthy adults. J Neuroeng Rehabil 1(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wernig A, Muller S (1992) Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30(4):229–238

    Article  CAS  PubMed  Google Scholar 

  40. Behrman AL, Harkema SJ (2000) Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 80(7):688–700

    CAS  PubMed  Google Scholar 

  41. Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, Phillips SM, McCartney N (2005) Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 43(5):291–298

    Article  CAS  PubMed  Google Scholar 

  42. Wernig A, Muller S, Nanassy A, Cagol E (1995) Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci 7(4):823–829

    Article  CAS  PubMed  Google Scholar 

  43. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M, G. Spinal Cord Injury Locomotor Trial (2006) Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 66(4):484–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reumont A, Schuld C, Pietron H, Zeiss D, Weidner N, Rupp R (2013) Kombination von Laufbandtherapie und Physiotherapie auf neurophysiologischer Basis bei akuter inkompletter Querschnittlähmung, in DMGP, Murnau am Staffelsee/Germany

    Google Scholar 

  45. Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol (1985) 96(5):1954–1960

    Article  CAS  Google Scholar 

  46. Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(Pt 12):2626–2634

    Article  PubMed  Google Scholar 

  47. Visintin M, Barbeau H (1994) The effects of parallel bars, body weight support and speed on the modulation of the locomotor pattern of spastic paretic gait. A preliminary communication. Paraplegia 32(8):540–553

    Article  CAS  PubMed  Google Scholar 

  48. Behrman AL, Lawless-Dixon AR, Davis SB, Bowden MG, Nair P, Phadke C, Hannold EM, Plummer P, Harkema SJ (2005) Locomotor training progression and outcomes after incomplete spinal cord injury. Phys Ther 85(12):1356–1371

    PubMed  Google Scholar 

  49. Schliessmann D, Schuld C, Schneiders M, Derlien S, Glockner M, Gladow T, Weidner N, Rupp R (2014) Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill. Front Hum Neurosci 8:416

    PubMed  PubMed Central  Google Scholar 

  50. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Article  PubMed  Google Scholar 

  51. Winfree KN, Stegall P, Agrawal SK (2011) Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II. IEEE Int Conf Rehabil Robot 2011:5975499

    PubMed  Google Scholar 

  52. Mehrholz J, Pohl M (2012) Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med 44(3):193–199

    Article  PubMed  Google Scholar 

  53. Colombo G, Wirz M, Dietz V (2001) Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39(5):252–255

    Article  CAS  PubMed  Google Scholar 

  54. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86(4):672–680

    Article  PubMed  Google Scholar 

  55. Nooijen CF, Ter Hoeve N, Field-Fote EC (2009) Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hornby TG, Zemon DH, Campbell D (2005) Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther 85(1):52–66

    PubMed  Google Scholar 

  57. Tefertiller C, Pharo B, Evans N, Winchester P (2011) Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev 48(4):387–416

    Article  PubMed  Google Scholar 

  58. Alcobendas-Maestro M, Esclarin-Ruz A, Casado-Lopez RM, Munoz-Gonzalez A, Perez-Mateos G, Gonzalez-Valdizan E, Martin JL (2012) Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil Neural Repair 26(9):1058–1063

    Article  PubMed  Google Scholar 

  59. Werner CPM, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hölig G, Koch R, Hesse S (2006) Lokomotionstherapie des akuten Schlaganfallpatienten: Ergebnisse der multizentrischen Deutschen Gangtrainer Studie (DEGAS). Neurol Rehabil 12(5):262–269

    Google Scholar 

  60. Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J (2007) Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  61. Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, Murillo N, Costa U, Tormos JM, Vidal-Samso J, Valls-Sole J, European Multicenter Study about Human Spinal Cord Injury Study, Medina J (2012) Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil 93(3):404–412

    Article  PubMed  Google Scholar 

  62. Rupp R, Plewa H, Schuld C, Gerner HJ, Hofer EP, Knestel M (2011) MotionTherapy@Home–First results of a clinical study with a novel robotic device for automated locomotion therapy at home. Biomed Tech (Berl) 56(1):11–21

    Article  Google Scholar 

  63. Rupp R, Schliessmann D, Plewa H, Schuld C, Gerner HJ, Weidner N, Hofer EP, Knestel M (2015) Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study. PLoS One 10(3):e0119167

    Article  PubMed  PubMed Central  Google Scholar 

  64. Morawietz C, Moffat F (2013) Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 94(11):2297–2308

    Article  PubMed  Google Scholar 

  65. van Hedel HJ (2006) Weight-supported treadmill versus over-ground training after spinal cord injury: from a physical therapist’s point of view. Phys Ther 86(10):1444–1445; author reply 1445–7

    Article  PubMed  Google Scholar 

  66. Dobkin BH, Duncan PW (2012) Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair 26(4):308–317

    Article  PubMed  PubMed Central  Google Scholar 

  67. Field-Fote EC, Roach KE (2011) Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 91(1):48–60

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B (2011) Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 34(4):362–379

    Article  PubMed  PubMed Central  Google Scholar 

  69. Musselman K.E et al. (2009). Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Phys Ther 89(6):601–11

    Google Scholar 

  70. Hidler J, Brennan D, Black I, Nichols D, Brady K, Nef T (2011) ZeroG: overground gait and balance training system. J Rehabil Res Dev 48(4):287–298

    Article  PubMed  Google Scholar 

  71. Robinson CJ, Kett NA, Bolam JM (1988) Spasticity in spinal cord injured patients: 2. Initial measures and long-term effects of surface electrical stimulation. Arch Phys Med Rehabil 69(10):862–868

    CAS  PubMed  Google Scholar 

  72. Hsieh JT, Wolfe, Connolly S, Townson AF, Curt, Blackmer, Sequeira, and Aubut (2007) Spasticity after spinal cord injury: an evidence-based review of current interventions. Top Spinal Cord Inj Rehabil 13(1):81–97

    Google Scholar 

  73. Vossius G (1990) Reduction of spasticity by electrical stimulation. A clinical approach advances in external control of human extremities X. Belgrad, former Jugoslavia. pp 39–50

    Google Scholar 

  74. Baldi JC, Jackson RD, Moraille R, Mysiw WJ (1998) Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord 36(7):463–469

    Article  CAS  PubMed  Google Scholar 

  75. Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson Nde N, Eser P (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176

    Article  PubMed  Google Scholar 

  76. Pette D, Vrbova G (1999) What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22(6):666–677

    Article  CAS  PubMed  Google Scholar 

  77. Davis GM, Hamzaid NA, Fornusek C (2008) Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs 32(8):625–629

    Article  PubMed  Google Scholar 

  78. Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ (2002) A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng 10(4):260–279

    Article  PubMed  Google Scholar 

  79. Lala D, Spaulding SJ, Burke SM, Houghton PE (2015) Electrical stimulation therapy for the treatment of pressure ulcers in individuals with spinal cord injury: a systematic review and meta-analysis. Int Wound J. doi: 10.1111/iwj.12446. [Epub ahead of print]

  80. Häger-Ross CK, Klein CS, Thomas CK (2006) Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol 96(1):165–174

    Article  PubMed  Google Scholar 

  81. Lam T, Eng JJ, Wolfe DL, Hsieh JT, Whittaker M, S.R.T. (2007) A systematic review of the efficacy of gait rehabilitation strategies for spinal cord injury. Top Spinal Cord Inj Rehabil 13(1):32–57

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, Modlin M, Vogelauer M, Pond A, Boncompagni S, Paolini C, Mayr W, Protasi F, Zampieri S (2010) Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabil Neural Repair 24(8):709–721

    Article  PubMed  Google Scholar 

  83. Hicks AL, Martin KA, Ditor DS, Latimer AE, Craven C, Bugaresti J, McCartney N (2003) Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41(1):34–43

    Article  CAS  PubMed  Google Scholar 

  84. Hicks AL, Martin Ginis KA, Pelletier CA, Ditor DS, Foulon B, Wolfe DL (2011) The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord 49(11):1103–1127

    Article  CAS  PubMed  Google Scholar 

  85. Arbour-Nicitopoulos KP, Martin Ginis KA, Latimer-Cheung AE, Bourne C, Campbell D, Cappe S, Ginis S, Hicks AL, Pomerleau P, Smith K (2013) Development of an evidence-informed leisure time physical activity resource for adults with spinal cord injury: the SCI Get Fit Toolkit. Spinal Cord 51(6):491–500

    Article  CAS  PubMed  Google Scholar 

  86. Thompson AK (2012) Interlimb coordination during locomotion: finding available neural pathways and using them for gait recovery. Clin Neurophysiol 123(4):635–637

    Article  PubMed  Google Scholar 

  87. Shah PK, Garcia-Alias G, Choe J, Gad P, Gerasimenko Y, Tillakaratne N, Zhong H, Roy RR, Edgerton VR (2013) Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury. Brain 136(Pt 11):3362–3377

    Article  PubMed  PubMed Central  Google Scholar 

  88. Meyns P, Bruijn SM, Duysens J (2013) The how and why of arm swing during human walking. Gait Posture 38(4):555–562

    Article  PubMed  Google Scholar 

  89. Light KE, Nuzik S, Personius W, Barstrom A (1984) Low-load prolonged stretch vs. high-load brief stretch in treating knee contractures. Phys Ther 64(3):330–333

    Article  CAS  PubMed  Google Scholar 

  90. Tardieu C, Lespargot A, Tabary C, Bret MD (1988) For how long must the soleus muscle be stretched each day to prevent contracture? Dev Med Child Neurol 30(1):3–10

    Article  CAS  PubMed  Google Scholar 

  91. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A (2012) Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 35(2):96–101

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rupp R, Blesch A, Schad L, Draganski B, Weidner N (2014) Novel aspects of diagnostics and therapy of spinal cord diseases. Nervenarzt 85(8):946–954

    Article  CAS  PubMed  Google Scholar 

  93. Krause J, Carter RE, Brotherton S (2009) Association of mode of locomotion and independence in locomotion with long-term outcomes after spinal cord injury. J Spinal Cord Med 32(3):237–248

    Article  PubMed  PubMed Central  Google Scholar 

  94. Krause JS (2004) Factors associated with risk for subsequent injuries after traumatic spinal cord injury. Arch Phys Med Rehabil 85(9):1503–1508

    Article  PubMed  Google Scholar 

  95. Brotherton SS, Krause JS, Nietert PJ (2007) Falls in individuals with incomplete spinal cord injury. Spinal Cord 45(1):37–40

    Article  CAS  PubMed  Google Scholar 

  96. Brotherton SS, Krause JS, Nietert PJ (2007) A pilot study of factors associated with falls in individuals with incomplete spinal cord injury. J Spinal Cord Med 30(3):243–250

    Article  PubMed  PubMed Central  Google Scholar 

  97. Saunders LL, Dipiro ND, Krause JS, Brotherton S, Kraft S (2013) Risk of fall-related injuries among ambulatory participants with spinal cord injury. Top Spinal Cord Inj Rehabil 19(4):259–266

    Article  PubMed  PubMed Central  Google Scholar 

  98. Haubert LL, Gutierrez DD, Newsam CJ, Gronley JK, Mulroy SJ, Perry J (2006) A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury. Arch Phys Med Rehabil 87(1):63–70

    Article  PubMed  Google Scholar 

  99. Saunders LL, Krause JS, DiPiro ND, Kraft S, Brotherton S (2013) Ambulation and complications related to assistive devices after spinal cord injury. J Spinal Cord Med 36(6):652–659

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hastings JD, Harvey LA, Bruce JA, Somers MF (2012) Compensation allows recovery of functional independence in people with severe motor impairments following spinal cord injury. J Rehabil Med 44(5):477–478

    Article  PubMed  Google Scholar 

  101. Tansey KE, McKay WB, Kakulas BA (2012) Restorative neurology: consideration of the new anatomy and physiology of the injured nervous system. Clin Neurol Neurosurg 114(5):436–440

    Article  PubMed  Google Scholar 

  102. Brown JM, Deriso DM, Tansey KE (2012) From contemporary rehabilitation to restorative neurology. Clin Neurol Neurosurg 114(5):471–474

    Article  PubMed  Google Scholar 

  103. Chisari C, Fanciullacci C, Lamola G, Rossi B, Cohen LG (2014) NIBS-driven brain plasticity. Arch Ital Biol 152(4):247–258

    PubMed  Google Scholar 

  104. Minassian K, Hofstoetter U, Tansey K, Mayr W (2012) Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg 114(5):489–497

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68(7):484–488

    Article  PubMed  Google Scholar 

  106. Tazoe T, Perez MA (2015) Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil 96(4 Suppl):S145–S155

    Article  PubMed  Google Scholar 

  107. Ellaway PH, Vasquez N, Craggs M (2014) Induction of central nervous system plasticity by repetitive transcranial magnetic stimulation to promote sensorimotor recovery in incomplete spinal cord injury. Front Integr Neurosci 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kumru H, Murillo N, Benito-Penalva J, Tormos JM, Vidal J (2016) Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat((R)) gait training. Neurosci Lett 620:143–147

    Article  CAS  PubMed  Google Scholar 

  110. Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, Dunsmore L, Salles S, Sawaki L (2016) Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation 38(1):15–25

    Article  PubMed  Google Scholar 

  111. Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K (2014) Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 37(2):202–211

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hofstoetter US, Hofer C, Kern H, Danner SM, Mayr W, Dimitrijevic MR, Minassian K (2013) Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech 58(Suppl. 1). doi: 10.1515/bmt-2013-4014

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hensel, C. et al. (2017). Neurorehabilitation: Strategies of Lower Extremities Restoration. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics