Skip to main content

The Current Status of Neuroprotection for Spinal Cord Injury

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury

Abstract

Spinal cord injury (SCI) resulting in impaired neurological functions creates suffering and economic burden. Directly after the injury, the conservation of tissue at the lesion site and the preservation of the connectivity through the injury epicenter have highest priority. This tissue preservation will not only reduce neurological deficits, but also and allows for more rapid and extensive recovery. Advances in clinical care intended to accomplish this goal include early surgical decompression, support of blood pressure, and the subject of this chapter – experimental neuroprotective therapeutics. The scientific foundation of neuroprotection is that “harmful” secondary injury processes extend and distribute the tissue loss caused by the primary injury event. Existing clinical knowledge together with preclinical experimental evidence has supported phase III clinical trial translation of some neuroprotective agents in the past four decades. Although some have had positive results, the magnitude of improvement was small, and associated complications and controversy surrounding certain therapeutics diminished their role in SCI care. However, these trials generated knowledge valuable to guide current work. Neuroscientists continue to develop new therapeutic approaches by demonstrating neuroprotective efficacy in small and large animal models. A consensus now exists that the preclinical data set to support the expensive process of translation must be very robust and include a well conducted independent replication. Primary endpoints for pivotal clinical trials have been clarified on the basis of aggregate experience and extensive studies on the natural history of SCI. “Secondary injury” consists of numerous mechanisms, and the probability of a robust protective effect of a single agent is small. It is necessary to design rational combinations of therapies to increase efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams MB, Nilsson I, Kjell J, Lewandowski S, Codeluppi S, Eriksson U, Olson L (2014) Response to the report, “A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury” by Sharp et al. Exp Neurol 257:182–185. doi:10.1016/j.expneurol.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  2. Abrams MB, Nilsson I, Lewandowski SA, Kjell J, Codeluppi S, Olson L, Eriksson U (2012) Imatinib enhances functional outcome after spinal cord injury. PLoS One 7(6):e38760. doi:10.1371/journal.pone.0038760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adzemovic MV, Zeitelhofer M, Eriksson U, Olsson T, Nilsson I (2013) Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response. PLoS One 8(2):e56586. doi:10.1371/journal.pone.0056586

    Article  CAS  PubMed  Google Scholar 

  4. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952(1):128–134

    Article  CAS  PubMed  Google Scholar 

  5. Albin MS, White RJ, Acosta-Rua G, Yashon D (1968) Study of functional recovery produced by delayed localized cooling after spinal cord injury in primates. J Neurosurg 29(2):113–120. doi:10.3171/jns.1968.29.2.0113

    Article  CAS  PubMed  Google Scholar 

  6. Alibai E, Zand F, Rahimi A, Rezaianzadeh A (2014) Erythropoietin plus methylprednisolone or methylprednisolone in the treatment of acute spinal cord injury: a preliminary report. Acta Med Iran 52(4):275–279

    CAS  PubMed  Google Scholar 

  7. Alter M (1998) GM1 ganglioside for acute ischemic stroke. Trial design issues. Ann N Y Acad Sci 845:391–401

    Article  CAS  PubMed  Google Scholar 

  8. Anderson KD, Gunawan A, Steward O (2005) Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Exp Neurol 194(1):161–174. doi:10.1016/j.expneurol.2005.02.006

    Article  PubMed  Google Scholar 

  9. Argentino C, Sacchetti ML, Toni D, Savoini G, D’Arcangelo E, Erminio F et al (1989) GM1 ganglioside therapy in acute ischemic stroke. Italian Acute Stroke Study – Hemodilution + Drug. Stroke 20(9):1143–1149

    Article  CAS  PubMed  Google Scholar 

  10. Ashcroft FM (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res 28(9):456–463. doi:10.1055/s-2007-979837

    Article  CAS  PubMed  Google Scholar 

  11. Azbill RD, Mu X, Springer JE (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 871(2):175–180

    Article  CAS  PubMed  Google Scholar 

  12. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39(3):236–253

    CAS  PubMed  Google Scholar 

  13. Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Brown A et al (2011) Human spinal cord injury causes specific increases in surface expression of beta integrins on leukocytes. J Neurotrauma 28(2):269–280. doi:10.1089/neu.2010.1618

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bao F, Brown A, Dekaban GA, Omana V, Weaver LC (2011) CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury. Exp Neurol 231(2):272–283. doi:10.1016/j.expneurol.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bao F, Chen Y, Dekaban GA, Weaver LC (2004) An anti-CD11d integrin antibody reduces cyclooxygenase-2 expression and protein and DNA oxidation after spinal cord injury in rats. J Neurochem 90(5):1194–1204. doi:10.1111/j.1471-4159.2004.02580.x

    Article  CAS  PubMed  Google Scholar 

  16. Bao F, Chen Y, Dekaban GA, Weaver LC (2004) Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J Neurochem 88(6):1335–1344

    Article  CAS  PubMed  Google Scholar 

  17. Bao F, Omana V, Brown A, Weaver LC (2012) The systemic inflammatory response after spinal cord injury in the rat is decreased by alpha4beta1 integrin blockade. J Neurotrauma 29(8):1626–1637. doi:10.1089/neu.2011.2190

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG (2009) Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol 68(6):661–676. doi:10.1097/NEN.0b013e3181a72605

    Article  CAS  PubMed  Google Scholar 

  19. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659. doi:10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  20. Becker KJ (2002) Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin 18(Suppl 2):s18–s22

    Article  PubMed  Google Scholar 

  21. Behrmann DL, Bresnahan JC, Beattie MS (1994) Modeling of acute spinal cord injury in the rat: neuroprotection and enhanced recovery with methylprednisolone, U-74006F and YM-14673. Exp Neurol 126(1):61–75. doi:10.1006/exnr.1994.1042

    Article  CAS  PubMed  Google Scholar 

  22. Benavides J, Camelin JC, Mitrani N, Flamand F, Uzan A, Legrand JJ et al (1985) 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission – II. Biochemical properties. Neuropharmacology 24(11):1085–1092

    Article  CAS  PubMed  Google Scholar 

  23. Benoit E, Escande D (1991) Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 419(6):603–609

    Article  CAS  PubMed  Google Scholar 

  24. Benowitz LI, Goldberg DE, Madsen JR, Soni D, Irwin N (1999) Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci U S A 96(23):13486–13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benowitz LI, Goldberg DE, Irwin N (2001) A purine-sensitive mechanism regulates the molecular program for axon growth. Restor Neurol Neurosci 19(1-2):41–49

    CAS  PubMed  Google Scholar 

  26. Benowitz LI, Jing Y, Tabibiazar R, Jo SA, Petrausch B, Stuermer CA, Rosenberg PA, Irwin N (1996) Axon outgrowth is regulated by an intracellular purine-sensitive mechanism in retinal ganglion cells. J Biol Chem 243(45):29626–29634

    Google Scholar 

  27. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563. doi:10.1056/NEJMoa003289

    Article  PubMed  Google Scholar 

  28. Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11:767–804. doi:10.1146/annurev.iy.11.040193.004003

    Article  CAS  PubMed  Google Scholar 

  29. Bigelow WG, Lindsay WK et al (1950) Oxygen transport and utilization in dogs at low body temperatures. Am J Physiol 160(1):125–137

    CAS  PubMed  Google Scholar 

  30. Blight AR (1994) Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60(1):263–273

    Article  CAS  PubMed  Google Scholar 

  31. Bohnert DM, Purvines S, Shapiro S, Borgens RB (2007) Simultaneous application of two neurotrophic factors after spinal cord injury. J Neurotrauma 24(5):846–863. doi:10.1089/neu.2006.0101

    Article  PubMed  Google Scholar 

  32. Borgens RB, Bohnert D (2001) Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. J Neurosci Res 66(6):1179–1186

    Article  CAS  PubMed  Google Scholar 

  33. Borgens RB, Shi R (2000) Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J 14(1):27–35

    CAS  PubMed  Google Scholar 

  34. Botterell EH, Lougheed WM, Scott JW, Vandewater SL (1956) Hypothermia, and interruption of carotid, or carotid and vertebral circulation, in the surgical management of intracranial aneurysms. J Neurosurg 13(1):1–42. doi:10.3171/jns.1956.13.1.0001

    Article  CAS  PubMed  Google Scholar 

  35. Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251(1):45–52

    Article  CAS  PubMed  Google Scholar 

  36. Bracken MB, Holford TR (1993) Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 79(4):500–507. doi:10.3171/jns.1993.79.4.0500

    Article  CAS  PubMed  Google Scholar 

  37. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411. doi:10.1056/NEJM199005173222001

    Article  CAS  PubMed  Google Scholar 

  38. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF et al (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63(5):704–713. doi:10.3171/jns.1985.63.5.0704

    Article  CAS  PubMed  Google Scholar 

  39. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277(20):1597–1604

    Article  CAS  PubMed  Google Scholar 

  40. Braughler JM, Hall ED (1984) Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J Neurosurg 61(2):290–295. doi:10.3171/jns.1984.61.2.0290

    Article  CAS  PubMed  Google Scholar 

  41. Bricolo A, Ore GD, Da Pian R, Faccioli F (1976) Local cooling in spinal cord injury. Surg Neurol 6(2):101–106

    CAS  PubMed  Google Scholar 

  42. Brommer B, Engel O, Kopp MA, Watzlawick R, Muller S, Pruss H et al (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139(Pt 3):692–707. doi:10.1093/brain/awv375

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP (2000) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141(10):3646–3656. doi:10.1210/endo.141.10.7693

    Article  CAS  PubMed  Google Scholar 

  44. Busto R, Dietrich WD, Globus MY, Ginsberg MD (1989) Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 101(3):299–304

    Article  CAS  PubMed  Google Scholar 

  45. Campbell SJ, Zahid I, Losey P, Law S, Jiang Y, Bilgen M et al (2008) Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord. Neuropharmacology 55(5):780–787. doi:10.1016/j.neuropharm.2008.06.074

    Article  CAS  PubMed  Google Scholar 

  46. Carlson GD, Minato Y, Okada A, Gorden CD, Warden KE, Barbeau JM et al (1997) Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma 14(12):951–962

    Article  CAS  PubMed  Google Scholar 

  47. Carvalho MO, Barros Filho TE, Tebet MA (2008) Effects of methylprednisolone and ganglioside GM-1 on a spinal lesion: a functional analysis. Clinics (Sao Paulo) 63(3):375–380

    Article  Google Scholar 

  48. Casas CE, Herrera LP, Prusmack C, Ruenes G, Marcillo A, Guest JD (2005) Effects of epidural hypothermic saline infusion on locomotor outcome and tissue preservation after moderate thoracic spinal cord contusion in rats. J Neurosurg Spine 2(3):308–318. doi:10.3171/spi.2005.2.3.0308

    Article  PubMed  Google Scholar 

  49. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135(Pt 4):1224–1236. doi:10.1093/brain/aws072

    Article  PubMed  Google Scholar 

  50. Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C et al (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99(4):2258–2263. doi:10.1073/pnas.042693799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaovipoch P, Jelks KA, Gerhold LM, West EJ, Chongthammakun S, Floyd CL (2006) 17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats. J Neurotrauma 23(6):830–852. doi:10.1089/neu.2006.23.830

    Article  PubMed  Google Scholar 

  52. Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, Dietrich WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17(4):321–332

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhry IB, Hallak J, Husain N, Minhas F, Stirling J, Richardson P et al (2012) Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol 26(9):1185–1193. doi:10.1177/0269881112444941

    Article  PubMed  CAS  Google Scholar 

  54. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6(7):797–801. doi:10.1038/77528

    Article  CAS  PubMed  Google Scholar 

  55. Chen B, Zuberi M, Borgens RB, Cho Y (2012) Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model. J Biol Eng 6(1):18. doi:10.1186/1754-1611-6-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheramy A, Barbeito L, Godeheu G, Glowinski J (1992) Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 147(2):209–212

    Article  CAS  PubMed  Google Scholar 

  57. Cho Y, Shi R, Ivanisevic A, Borgens RB (2010) Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury. J Neurosci Res 88(7):1433–1444. doi:10.1002/jnr.22309

    Article  CAS  PubMed  Google Scholar 

  58. Chow DS, Teng Y, Toups EG, Aarabi B, Harrop JS, Shaffrey CI et al (2012) Pharmacology of riluzole in acute spinal cord injury. J Neurosurg Spine 17(1 Suppl):129–140. doi:10.3171/2012.5.AOSPINE12112

    Article  PubMed  Google Scholar 

  59. Churi SB, Abdel-Aleem OS, Tumber KK, Scuderi-Porter H, Taylor BK (2008) Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor-gamma to rapidly inhibit neuropathic pain in rats. J Pain 9(7):639–649. doi:10.1016/j.jpain.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coleman WP, Benzel D, Cahill DW, Ducker T, Geisler F, Green B et al (2000) A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord 13(3):185–199

    Article  CAS  PubMed  Google Scholar 

  61. Constantini S, Young W (1994) The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg 80(1):97–111. doi:10.3171/jns.1994.80.1.0097

    Article  CAS  PubMed  Google Scholar 

  62. Conta AC, Stelzner DJ (2008) Immunomodulatory effect of the purine nucleoside inosine following spinal cord contusion injury in rat. Spinal Cord 46(1):39–44. doi:10.1038/sj.sc.3102057

    Article  CAS  PubMed  Google Scholar 

  63. Coselli JS, LeMaire SA, Koksoy C, Schmittling ZC, Curling PE (2002) Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 35(4):631–639

    Article  PubMed  Google Scholar 

  64. Costa DD, Beghi E, Carignano P, Pagliacci C, Faccioli F, Pupillo E (2015) Tolerability and efficacy of erythropoietin (EPO) treatment in traumatic spinal cord injury: a preliminary randomized comparative trial vs. methylprednisolone (MP). Neurol Sci. doi:10.1007/s10072-015-2182-5

    Google Scholar 

  65. Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, Safi HJ et al (1991) A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg 13(1):36–45; discussion 45-36

    Article  CAS  PubMed  Google Scholar 

  66. Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG (2007) Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 24(9):1475–1486. doi:10.1089/neu.2007.0294

    Article  PubMed  Google Scholar 

  67. Cuzzocrea S, Genovese T, Mazzon E, Esposito E, Di Paola R, Muia C et al (2008) Effect of 17beta-estradiol on signal transduction pathways and secondary damage in experimental spinal cord trauma. Shock 29(3):362–371. doi:10.1097/shk.0b013e31814545dc

    CAS  PubMed  Google Scholar 

  68. Dame C, Juul SE, Christensen RD (2001) The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate 79(3-4):228–235, doi:47097

    Article  CAS  PubMed  Google Scholar 

  69. Datto JP, Yang J, Dietrich WD, Pearse DD (2015) Does being female provide a neuroprotective advantage following spinal cord injury? Neural Regen Res 10(10):1533–1536. doi:10.4103/1673-5374.165213

    Article  PubMed  PubMed Central  Google Scholar 

  70. De Nicola AF, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Guennoun R, Schumacher M (2003) Steroid effects on glial cells: detrimental or protective for spinal cord function? Ann N Y Acad Sci 1007:317–328

    Article  PubMed  CAS  Google Scholar 

  71. DeGraba TJ, Pettigrew LC (2000) Why do neuroprotective drugs work in animals but not humans? Neurol Clin 18(2):475–493

    Article  CAS  PubMed  Google Scholar 

  72. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22(15):6570–6577, doi:20026637

    CAS  PubMed  Google Scholar 

  73. Derry DM, Wolfe LS (1967) Gangliosides in isolated neurons and glial cells. Science 158(3807):1450–1452

    Article  CAS  PubMed  Google Scholar 

  74. Dididze M, Green BA, Dietrich WD, Vanni S, Wang MY, Levi AD (2013) Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 51(5):395–400. doi:10.1038/sc.2012.161

    Article  CAS  PubMed  Google Scholar 

  75. Dietrich WD, Bramlett HM (2010) The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 7(1):43–50. doi:10.1016/j.nurt.2009.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dietrich WD, Chatzipanteli K, Vitarbo E, Wada K, Kinoshita K (2004) The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl 89:69–74

    CAS  PubMed  Google Scholar 

  77. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, Gassmann M (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A 92(9):3717–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dimar JR 2nd, Glassman SD, Raque GH, Zhang YP, Shields CB (1999) The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine (Phila Pa 1976) 24(16):1623–1633

    Article  Google Scholar 

  79. Ditor DS, Bao F, Chen Y, Dekaban GA, Weaver LC (2006) A therapeutic time window for anti-CD 11d monoclonal antibody treatment yielding reduced secondary tissue damage and enhanced behavioral recovery following severe spinal cord injury. J Neurosurg Spine 5(4):343–352. doi:10.3171/spi.2006.5.4.343

    Article  PubMed  Google Scholar 

  80. Ditor DS, John SM, Roy J, Marx JC, Kittmer C, Weaver LC (2007) Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. J Neurosci Res 85(7):1458–1467. doi:10.1002/jnr.21283

    Article  CAS  PubMed  Google Scholar 

  81. Drake CG, Barr HW, Coles JC, Gergely NF (1964) The use of extracorporeal circulation and profound hypothermia in the treatment of ruptured intracranial aneurysm. J Neurosurg 21:575–581. doi:10.3171/jns.1964.21.7.0575

    Article  CAS  PubMed  Google Scholar 

  82. Drian MJ, Kamenka JM, Pirat JL, Privat A (1991) Non-competitive antagonists of N-methyl-D-aspartate prevent spontaneous neuronal death in primary cultures of embryonic rat cortex. J Neurosci Res 29(1):133–138. doi:10.1002/jnr.490290116

    Article  CAS  PubMed  Google Scholar 

  83. Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162(2):233–243. doi:10.1083/jcb.200301080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duerstock BS, Borgens RB (2002) Three-dimensional morphometry of spinal cord injury following polyethylene glycol treatment. J Exp Biol 205(Pt 1):13–24

    PubMed  Google Scholar 

  85. Dvorak MF, Noonan VK, Fallah N, Fisher CG, Rivers CS, Ahn H et al (2014) Minimizing errors in acute traumatic spinal cord injury trials by acknowledging the heterogeneity of spinal cord anatomy and injury severity: an observational Canadian cohort analysis. J Neurotrauma 31(18):1540–1547. doi:10.1089/neu.2013.3278

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8(8):495–505

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, Jähnig P, Herrmann M, Knauth M, Bähr M, Heide W, Wagner A, Schwab S, Reichmann H, Schwendemann G, Dengler R, Kastrup A, Bartels C; EPO Stroke Trial Group (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 40(12):e647–656. doi:10.1161/STROKEAHA.109.564872

  88. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57(8):1428–1434

    Google Scholar 

  89. Estrada V, Brazda N, Schmitz C, Heller S, Blazyca H, Martini R, Muller HW (2014) Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiol Dis 67:165–179. doi:10.1016/j.nbd.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  90. Faden AI, Jacobs TP (1984) Dynorphin-related peptides cause motor dysfunction in the rat through a non-opiate action. Br J Pharmacol 81(2):271–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Faden AI, Jacobs TP, Holaday JW (1981) Opiate antagonist improves neurologic recovery after spinal injury. Science 211(4481):493–494

    Article  CAS  PubMed  Google Scholar 

  92. Faden AI, Jacobs TP, Holaday JW (1981) Thyrotropin-releasing hormone improves neurologic recovery after spinal trauma in cats. N Engl J Med 305(18):1063–1067. doi:10.1056/NEJM198110293051806

    Article  CAS  PubMed  Google Scholar 

  93. Faden AI, Lemke M, Demediuk P (1988) Effects of BW755C, a mixed cyclo-oxygenase-lipoxygenase inhibitor, following traumatic spinal cord injury in rats. Brain Res 463(1):63–68

    Article  CAS  PubMed  Google Scholar 

  94. Faden AI, Yum SW, Lemke M, Vink R (1990) Effects of TRH-analog treatment on tissue cations, phospholipids and energy metabolism after spinal cord injury. J Pharmacol Exp Ther 255(2):608–614

    CAS  PubMed  Google Scholar 

  95. Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B et al (2012) Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 135(Pt 11):3238–3250. doi:10.1093/brain/aws267

    Article  PubMed  Google Scholar 

  96. Farooque M, Suo Z, Arnold PM, Wulser MJ, Chou CT, Vancura RW et al (2006) Gender-related differences in recovery of locomotor function after spinal cord injury in mice. Spinal Cord 44(3):182–187. doi:10.1038/sj.sc.3101816

    Article  CAS  PubMed  Google Scholar 

  97. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45(3):190–205. doi:10.1038/sj.sc.3102007

    Article  CAS  PubMed  Google Scholar 

  98. Fee DB, Swartz KR, Joy KM, Roberts KN, Scheff NN, Scheff SW (2007) Effects of progesterone on experimental spinal cord injury. Brain Res 1137(1):146–152. doi:10.1016/j.brainres.2006.12.024

    Article  CAS  PubMed  Google Scholar 

  99. Fehlings MG, Nakashima H, Nagoshi N, Chow DS, Grossman RG, Kopjar B (2016) Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord 54(1):8–15. doi:10.1038/sc.2015.95

    Article  CAS  PubMed  Google Scholar 

  100. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI et al (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796. doi:10.1089/neu.2011.1765

    Article  PubMed  Google Scholar 

  101. Fehlings MG, Vaccaro A, Wilson JR, Singh A, W. Cadotte D, Harrop JS (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037. doi:10.1371/journal.pone.0032037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fehlings MG, Wilson JR, Cho N (2014) Methylprednisolone for the treatment of acute spinal cord injury: counterpoint. Neurosurgery 61(Suppl 1):36–42. doi:10.1227/NEU.0000000000000412

    Article  PubMed  Google Scholar 

  103. Feldblum S, Arnaud S, Simon M, Rabin O, D’Arbigny P (2000) Efficacy of a new neuroprotective agent, gacyclidine, in a model of rat spinal cord injury. J Neurotrauma 17(11):1079–1093

    Article  CAS  PubMed  Google Scholar 

  104. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270(7):3074–3080

    Article  CAS  PubMed  Google Scholar 

  105. Feuerstein G, Lux WE Jr, Ezra D, Faden AI (1984) Reversal of leukotriene D4 hypotension by thyrotropin-releasing hormone. Neurosci Res 2(1-2):121–124

    Article  CAS  PubMed  Google Scholar 

  106. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19(19):8182–8198

    CAS  PubMed  Google Scholar 

  107. Flamm ES, Young W, Collins WF, Piepmeier J, Clifton GL, Fischer B (1985) A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg 63(3):390–397. doi:10.3171/jns.1985.63.3.0390

    Article  CAS  PubMed  Google Scholar 

  108. Flamm ES, Young W, Demopoulos HB, DeCrescito V, Tomasula JJ (1982) Experimental spinal cord injury: treatment with naloxone. Neurosurgery 10(2):227–231

    CAS  PubMed  Google Scholar 

  109. Fleming JC, Bailey CS, Hundt H, Gurr KR, Bailey SI, Cepinskas G et al (2012) Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. J Trauma Acute Care Surg 72(5):1194–1201. doi:10.1097/TA.0b013e31824d68bd; discussion 1202

    Article  CAS  PubMed  Google Scholar 

  110. Fu Q, Hue J, Li S (2007) Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci 27(15):4154–4164. doi:10.1523/JNEUROSCI.4353-06.2007

    Article  CAS  PubMed  Google Scholar 

  111. Fujita Y, Shingu T, Kurihara M, Miyake H, Kono T, Tsujimura M, Mori K (1985) Evaluation of a low dose administration of aspirin, dipyridamol and steroid. Therapeutic effects on motor function and protective effects on Na + -K + -activated ATPase activity against lipid peroxidation in an experimental model of spinal cord injury. Paraplegia 23(1):56–57. doi:10.1038/sc.1985.9

    Article  CAS  PubMed  Google Scholar 

  112. Furlan JC, Noonan V, Cadotte DW, Fehlings MG (2011) Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies. J Neurotrauma 28(8):1371–1399. doi:10.1089/neu.2009.1147

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ganglioside GM1 in acute ischemic stroke. The SASS trial (1994) Stroke 25(6):1141–1148

    Google Scholar 

  114. Garcia-Ovejero D, Gonzalez S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F (2014) Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma 31(9):857–871. doi:10.1089/neu.2013.3162

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gaviria M, Privat A, d’Arbigny P, Kamenka J, Haton H, Ohanna F (2000) Neuroprotective effects of a novel NMDA antagonist, Gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res 874(2):200–209

    Article  CAS  PubMed  Google Scholar 

  116. Geisler FH, Coleman WP, Grieco G, Poonian D; Sygen Study Group (2001) The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976) 26(24 Suppl):S87–98

    Google Scholar 

  117. Geisler FH, Dorsey FC, Coleman WP (1991) Correction: recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 325(23):1659–1660

    CAS  PubMed  Google Scholar 

  118. Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324(26):1829–1838. doi:10.1056/NEJM199106273242601

    Article  CAS  PubMed  Google Scholar 

  119. George ER, Scholten DJ, Buechler CM, Jordan-Tibbs J, Mattice C, Albrecht RM (1995) Failure of methylprednisolone to improve the outcome of spinal cord injuries. Am Surg 61(8):659–663; discussion 663-654

    CAS  PubMed  Google Scholar 

  120. Geremia NM, Bao F, Rosenzweig TE, Hryciw T, Weaver L, Dekaban GA, Brown A (2012) CD11d antibody treatment improves recovery in spinal cord-injured mice. J Neurotrauma 29(3):539–550. doi:10.1089/neu.2011.1976

    Article  PubMed  Google Scholar 

  121. Gerhart KA, Johnson RL, Menconi J, Hoffman RE, Lammertse DP (1995) Utilization and effectiveness of methylprednisolone in a population-based sample of spinal cord injured persons. Paraplegia 33(6):316–321. doi:10.1038/sc.1995.71

    Article  CAS  PubMed  Google Scholar 

  122. Gerndt SJ, Rodriguez JL, Pawlik JW, Taheri PA, Wahl WL, Micheals AJ, Papadopoulos SM (1997) Consequences of high-dose steroid therapy for acute spinal cord injury. J Trauma 42(2):279–284

    Article  CAS  PubMed  Google Scholar 

  123. Gladstone DJ, Black SE, Hakim AM; Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke, Recovery (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33(8):2123–2136

    Google Scholar 

  124. Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125(3):605–614. doi:10.1016/j.neuroscience.2004.02.024

    Article  CAS  PubMed  Google Scholar 

  125. Gonzalez SL, Lopez-Costa JJ, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2009) Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury. Cell Mol Neurobiol 29(1):27–39. doi:10.1007/s10571-008-9291-0

    Article  CAS  PubMed  Google Scholar 

  126. Goodman Y, Bruce AJ, Cheng B, Mattson MP (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 66(5):1836–1844

    Article  CAS  PubMed  Google Scholar 

  127. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C et al (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99(14):9450–9455. doi:10.1073/pnas.142287899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grant P, Song JY, Swedo SE (2010) Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 20(4):309–315. doi:10.1089/cap.2010.0009

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gris D, Hamilton EF, Weaver LC (2008) The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Exp Neurol 211(1):259–270. doi:10.1016/j.expneurol.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  130. Gris D, Marsh DR, Dekaban GA, Weaver LC (2005) Comparison of effects of methylprednisolone and anti-CD11d antibody treatments on autonomic dysreflexia after spinal cord injury. Exp Neurol 194(2):541–549. doi:10.1016/j.expneurol.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  131. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24(16):4043–4051. doi:10.1523/JNEUROSCI.5343-03.2004

    Article  CAS  PubMed  Google Scholar 

  132. Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C et al (2014) A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma 31(3):239–255. doi:10.1089/neu.2013.2969

    Article  PubMed  PubMed Central  Google Scholar 

  133. Grossman RG, Frankowski RF, Burau KD, Toups EG, Crommett JW, Johnson MM et al (2012) Incidence and severity of acute complications after spinal cord injury. J Neurosurg Spine 17(1 Suppl):119–128. doi:10.3171/2012.5.AOSPINE12127

    Article  PubMed  Google Scholar 

  134. Guest J, Eleraky MA, Apostolides PJ, Dickman CA, Sonntag VK (2002) Traumatic central cord syndrome: results of surgical management. J Neurosurg 97(1 Suppl):25–32

    PubMed  Google Scholar 

  135. Guha A, Tator CH, Smith CR, Piper I (1989) Improvement in post-traumatic spinal cord blood flow with a combination of a calcium channel blocker and a vasopressor. J Trauma 29(10):1440–1447

    Article  CAS  PubMed  Google Scholar 

  136. Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M (2016) Intestinal microbiota in patients with spinal cord injury. PLoS One 11(1):e0145878. doi:10.1371/journal.pone.0145878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Guth L (2012) A reassessment of LPS/indomethacin/pregnenolone combination therapy after spinal cord injury in rats. Exp Neurol 233(2):686. doi:10.1016/j.expneurol.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  138. Guth L, Zhang Z, DiProspero NA, Joubin K, Fitch MT (1994) Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol 126(1):76–87. doi:10.1006/exnr.1994.1043

    Article  CAS  PubMed  Google Scholar 

  139. Guven MB, Cirak B, Yuceer N, Ozveren F (1999) Is indomethacin harmful in spinal cord injury treatment? An experimental study. Pediatr Neurosurg 31(4):189–193

    Article  CAS  PubMed  Google Scholar 

  140. Haghighi SS, Chehrazi BB, Wagner FC Jr (1988) Effect of nimodipine-associated hypotension on recovery from acute spinal cord injury in cats. Surg Neurol 29(4):293–297

    Article  CAS  PubMed  Google Scholar 

  141. Hains BC, Yucra JA, Hulsebosch CE (2001) Reduction of pathological and behavioral deficits following spinal cord contusion injury with the selective cyclooxygenase-2 inhibitor NS-398. J Neurotrauma 18(4):409–423. doi:10.1089/089771501750170994

    Article  CAS  PubMed  Google Scholar 

  142. Hall ED (1993) The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol 59:241–248

    CAS  PubMed  Google Scholar 

  143. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425–S442

    PubMed  Google Scholar 

  144. Hallenbeck JM, Jacobs TP, Faden AI (1983) Combined PGI2, indomethacin, and heparin improves neurological recovery after spinal trauma in cats. J Neurosurg 58(5):749–754. doi:10.3171/jns.1983.58.5.0749

    Article  CAS  PubMed  Google Scholar 

  145. Hamaguchi T, Ono K, Yamada M (2010) REVIEW: curcumin and Alzheimer’s disease. CNS Neurosci Ther 16(5):285–297. doi:10.1111/j.1755-5949.2010.00147.x

    Article  CAS  PubMed  Google Scholar 

  146. Hamberger A, Svennerholm L (1971) Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J Neurochem 18(10):1821–1829

    Article  CAS  PubMed  Google Scholar 

  147. Hansebout RR, Hansebout CR (2014) Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg Spine 20(5):550–561. doi:10.3171/2014.2.SPINE13318

    Article  PubMed  Google Scholar 

  148. Hansebout RR, Tanner JA, Romero-Sierra C (1984) Current status of spinal cord cooling in the treatment of acute spinal cord injury. Spine (Phila Pa 1976) 9(5):508–511

    Article  CAS  Google Scholar 

  149. Harada N, Taoka Y, Okajima K (2006) Role of prostacyclin in the development of compression trauma-induced spinal cord injury in rats. J Neurotrauma 23(12):1739–1749. doi:10.1089/neu.2006.23.1739

    Article  PubMed  Google Scholar 

  150. Hawryluk GW, Whetstone WD, Saigal R, Ferguson AR, Talbott JF, Bresnahan JC et al (2015) Mean arterial blood pressure correlates with neurological recovery following human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. doi:10.1089/neu.2014.3778

    PubMed  PubMed Central  Google Scholar 

  151. Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Tanaka Y et al (2012) Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord 50(7):493–496. doi:10.1038/sc.2011.184

    Article  CAS  PubMed  Google Scholar 

  152. Heary RF, Vaccaro AR, Mesa JJ, Northrup BE, Albert TJ, Balderston RA, Cotler JM (1997) Steroids and gunshot wounds to the spine. Neurosurgery 41(3):576–583; discussion 583-574

    CAS  PubMed  Google Scholar 

  153. Helmholz HF, Haddow MK (1930) Eight years experience with the ketogenic diet in the treatment of epilepsy. JAMA 95(10):707–709

    Article  Google Scholar 

  154. Hirbec H, Gaviria M, Vignon J (2001) Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor. CNS Drug Rev 7(2):172–198

    Article  CAS  PubMed  Google Scholar 

  155. Holaday JW, Faden AI (1978) Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature 275(5679):450–451

    Article  CAS  PubMed  Google Scholar 

  156. Holaday JW, Tseng LF, Loh HH, Li CH (1978) Thyrotropin releasing hormone antagonizes beta endorphin hypothermia and catalepsy. Life Sci 22(17):1537–1544

    Article  CAS  PubMed  Google Scholar 

  157. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28(38):9330–9341. doi:10.1523/JNEUROSCI.2488-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hsu CY, Dimitrijevic MR (1990) Methylprednisolone in spinal cord injury: the possible mechanism of action. J Neurotrauma 7(3):115–119

    Article  CAS  PubMed  Google Scholar 

  159. Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N et al (2007) A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130(Pt 11):3004–3019. doi:10.1093/brain/awm223

    Article  CAS  PubMed  Google Scholar 

  160. Hurlbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg 93(1 Suppl):1–7

    CAS  PubMed  Google Scholar 

  161. Hurtado A, Marcillo A, Frydel B, Bunge MB, Bramlett HM, Dietrich WD (2012) Anti-CD11d monoclonal antibody treatment for rat spinal cord compression injury. Exp Neurol 233(2):606–611. doi:10.1016/j.expneurol.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  162. Imamura H, Tator CH (1998) Effect of intrathecal nimodipine on spinal cord blood flow and evoked potentials in the normal or injured cord. Spinal Cord 36(7):497–506

    Article  CAS  PubMed  Google Scholar 

  163. Investigators Ninds Net-Pd (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66(5):664–671. doi:10.1212/01.wnl.0000201252.57661.e1

  164. Investigators Ninds Net-Pd (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31(3):141–150. doi:10.1097/WNF.0b013e3181342f32

  165. Irwin N, Li YM, O’Toole JE, Benowitz LI (2006) Mst3b, a purine-sensitive Ste20-like protein kinase, regulates axon outgrowth. Proc Natl Acad Sci U S A 103(48):18320–18325. doi:10.1073/pnas.0605135103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ishikawa T, Marsala M (1999) Hypothermia prevents biphasic glutamate release and corresponding neuronal degeneration after transient spinal cord ischemia in the rat. Cell Mol Neurobiol 19(2):199–208

    CAS  PubMed  Google Scholar 

  167. Izumi Y, Roussel S, Pinard E, Seylaz J (1991) Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 11(6):1025–1030. doi:10.1038/jcbfm.1991.170

    Article  CAS  PubMed  Google Scholar 

  168. Jeong MA, Plunet W, Streijger F, Lee JH, Plemel JR, Park S et al (2011) Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma 28(3):479–492. doi:10.1089/neu.2010.1609

    Article  PubMed  PubMed Central  Google Scholar 

  169. Jia HB, Wang XM, Qiu LL, Liu XY, Shen JC, Ji Q, Yang JJ (2013) Spinal neuroimmune activation inhibited by repeated administration of pioglitazone in rats after L5 spinal nerve transection. Neurosci Lett 543:130–135. doi:10.1016/j.neulet.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  170. Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y et al (2005) Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A 102(17):6207–6212. doi:10.1073/pnas.0306743102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jones CE, Dyken PR, Huttenlocher PR, Jabbour JT, Maxwell KW (1982) Inosiplex therapy in subacute sclerosing panencephalitis. A multicentre, non-randomised study in 98 patients. Lancet 1(8280):1034–1037

    Article  CAS  PubMed  Google Scholar 

  172. Jonsson HT Jr, Daniell HB (1976) Altered levels of PGF in cat spinal cord tissue following traumatic injury. Prostaglandins 11(1):51–61

    Article  CAS  PubMed  Google Scholar 

  173. Jyoti A, Sethi P, Sharma D (2009) Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 14(2):300–308. doi:10.1016/j.yebeh.2008.11.011

    Article  PubMed  Google Scholar 

  174. Kaptanoglu E, Beskonakli E, Okutan O, Selcuk Surucu H, Taskin Y (2003) Effect of magnesium sulphate in experimental spinal cord injury: evaluation with ultrastructural findings and early clinical results. J Clin Neurosci 10(3):329–334

    Article  CAS  PubMed  Google Scholar 

  175. Kawata K, Morimoto T, Ohashi T, Tsujimoto S, Hoshida T, Tsunoda S, Sakaki T (1993) Experimental study of acute spinal cord injury: a histopathological study. No Shinkei Geka 21(1):45–51

    CAS  PubMed  Google Scholar 

  176. Kim D, Zai L, Liang P, Schaffling C, Ahlborn D, Benowitz LI (2013) Inosine enhances axon sprouting and motor recovery after spinal cord injury. PLoS One 8(12):e81948. doi:10.1371/journal.pone.0081948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Kitzman PH (2009) Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett 455(2):150–153. doi:10.1016/j.neulet.2009.03.016

    Article  CAS  PubMed  Google Scholar 

  178. Kjell J, Finn A, Hao J, Wellfelt K, Josephson A, Svensson CI (2015) Delayed imatinib treatment for acute spinal cord injury: functional recovery and serum biomarkers. J Neurotrauma. doi:10.1089/neu.2014.3863

    PubMed  PubMed Central  Google Scholar 

  179. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  PubMed  Google Scholar 

  180. Kopp MA, Druschel C, Meisel C, Liebscher T, Prilipp E, Watzlawick R et al (2013) The SCIentinel study – prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS) – study protocol and interim feasibility data. BMC Neurol 13:168. doi:10.1186/1471-2377-13-168

    Article  PubMed  PubMed Central  Google Scholar 

  181. Koskinen LO (1989) Effects of TRH on blood flow and the microcirculation. Ann N Y Acad Sci 553:353–369

    Article  CAS  PubMed  Google Scholar 

  182. Kuchner EF, Hansebout RR (1976) Combined steroid and hypothermia treatment of experimental spinal cord injury. Surg Neurol 6(6):371–376

    CAS  PubMed  Google Scholar 

  183. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A et al (2014) Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2013-307454

    PubMed Central  Google Scholar 

  184. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A et al (2015) Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry 86(3):273–279. doi:10.1136/jnnp-2013-307454

    Article  PubMed  Google Scholar 

  185. Kuricova M, Ledecky V, Liptak T, Madari A, Grulova I, Slovinska L et al (2014) Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 35(11):1785–1791. doi:10.1007/s10072-014-1840-3

    Article  PubMed  Google Scholar 

  186. Kwon BK, Curt A, Belanger LM, Bernardo A, Chan D, Markez JA et al (2009) Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine 10(3):181–193. doi:10.3171/2008.10.SPINE08217

    Article  PubMed  Google Scholar 

  187. Kwon BK, Okon EB, Tsai E, Beattie MS, Bresnahan JC, Magnuson DK et al (2011) A grading system to evaluate objectively the strength of pre-clinical data of acute neuroprotective therapies for clinical translation in spinal cord injury. J Neurotrauma 28(8):1525–1543. doi:10.1089/neu.2010.1296

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwon BK, Roy J, Lee JH, Okon E, Zhang H, Marx JC, Kindy MS (2009) Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotrauma 26(8):1379–1393. doi:10.1089/neu.2009-0884

    Article  PubMed  Google Scholar 

  189. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682. doi:10.1089/neu.2009.1080

    Article  PubMed  Google Scholar 

  190. Labombarda F, Gonzalez SL, Gonzalez DM, Guennoun R, Schumacher M, de Nicola AF (2002) Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 19(3):343–355. doi:10.1089/089771502753594918

    Article  PubMed  Google Scholar 

  191. Labombarda F, Gonzalez SL, Lima A, Roig P, Guennoun R, Schumacher M, de Nicola AF (2009) Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 57(8):884–897. doi:10.1002/glia.20814

    Article  PubMed  Google Scholar 

  192. Labombarda F, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231(1):135–146. doi:10.1016/j.expneurol.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  193. Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF (2000) Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 73(3-4):159–169

    Article  CAS  PubMed  Google Scholar 

  194. Lammertse D, Tuszynski MH, Steeves JD, Curt A, Fawcett JW, Rask C, Ditunno JF, Fehlings MG, Guest JD, Ellaway PH, Kleitman N, Blight AR, Dobkin BH, Grossman R, Katoh H, Privat A, Kalichman M; International Campaign for Cures of Spinal Cord Injury Paralysis (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 45(3):232–242. doi:10.1038/sj.sc.3102010

  195. Lang-Lazdunski L, Heurteaux C, Vaillant N, Widmann C, Lazdunski M (1999) Riluzole prevents ischemic spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg 117(5):881–889

    Article  CAS  PubMed  Google Scholar 

  196. Lapchak PA, Zhang JH, Noble-Haeusslein LJ (2013) RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res 4(3):279–285. doi:10.1007/s12975-012-0209-2

    Article  PubMed  Google Scholar 

  197. Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR et al (2004) A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma 21(12):1767–1777. doi:10.1089/neu.2004.21.1767

    Article  PubMed  Google Scholar 

  198. Le E, Aarabi B, Hersh DS, Shanmuganathan K, Diaz C, Massetti J, Akhtar-Danesh N (2015) Predictors of intramedullary lesion expansion rate on MR images of patients with subaxial spinal cord injury. J Neurosurg Spine 22(6):611–621. doi:10.3171/2014.10.SPINE14576

    Article  PubMed  Google Scholar 

  199. Lee JY, Choi HY, Na WH, Ju BG, Yune TY (2015) 17beta-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology 156(5):1838–1850. doi:10.1210/en.2014-1832

    Article  CAS  PubMed  Google Scholar 

  200. Lee JS, Han YM, Yoo DS, Choi SJ, Choi BH, Kim JH et al (2004) A molecular basis for the efficacy of magnesium treatment following traumatic brain injury in rats. J Neurotrauma 21(5):549–561. doi:10.1089/089771504774129883

    Article  CAS  PubMed  Google Scholar 

  201. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ (2011) Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma 28(9):1893–1907. doi:10.1089/neu.2011.1860

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC et al (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20(10):1017–1027. doi:10.1089/089771503770195867

    Article  PubMed  Google Scholar 

  203. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N et al (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547

    CAS  PubMed  Google Scholar 

  204. Levi AD, Casella G, Green BA, Dietrich WD, Vanni S, Jagid J, Wang MY (2010) Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66(4):670–677. doi:10.1227/01.NEU.0000367557.77973.5F

    Article  PubMed  Google Scholar 

  205. Levi L, Wolf A, Belzberg H (1993) Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery 33(6):1007–1016; discussion 1016-1007

    CAS  PubMed  Google Scholar 

  206. Levy ML, Gans W, Wijesinghe HS, SooHoo WE, Adkins RH, Stillerman CB (1996) Use of methylprednisolone as an adjunct in the management of patients with penetrating spinal cord injury: outcome analysis. Neurosurgery 39(6):1141–1149

    Article  CAS  PubMed  Google Scholar 

  207. Li X, Du J, Xu S, Lin X, Ling Z (2013) Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces secondary damage in experimental spinal cord injury. J Int Med Res 41(1):153–161. doi:10.1177/0300060513476601

    Article  PubMed  CAS  Google Scholar 

  208. Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27(5):1043–1054. doi:10.1038/sj.jcbfm.9600417

    Article  CAS  PubMed  Google Scholar 

  209. Liu GJ, Luo J, Zhang LP, Wang ZJ, Xu LL, He GH et al (2011) Meta-analysis of the effectiveness and safety of prophylactic use of nimodipine in patients with an aneurysmal subarachnoid haemorrhage. CNS Neurol Disord Drug Targets 10(7):834–844

    Article  CAS  PubMed  Google Scholar 

  210. Liu F, You SW, Yao LP, Liu HL, Jiao XY, Shi M et al (2006) Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord 44(7):421–426. doi:10.1038/sj.sc.3101878

    CAS  PubMed  Google Scholar 

  211. Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB (2007) Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol 210(Pt 8):1455–1462. doi:10.1242/jeb.02756

    Article  CAS  PubMed  Google Scholar 

  212. Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL et al (2009) Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 514(5):433–448. doi:10.1002/cne.22014

    Article  PubMed  Google Scholar 

  213. Lorber B, Howe ML, Benowitz LI, Irwin N (2009) Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 12(11):1407–1414. doi:10.1038/nn.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lord-Fontaine S, Yang F, Diep Q, Dergham P, Munzer S, Tremblay P, McKerracher L (2008) Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury. J Neurotrauma 25(11):1309–1322. doi:10.1089/neu.2008.0613

    Article  PubMed  Google Scholar 

  215. Luo J, Borgens R, Shi R (2002) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 83(2):471–480

    Article  CAS  PubMed  Google Scholar 

  216. Luo J, Borgens R, Shi R (2004) Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. J Neurotrauma 21(8):994–1007. doi:10.1089/0897715041651097

    Article  PubMed  Google Scholar 

  217. Luo J, Shi R (2007) Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 1155:10–16. doi:10.1016/j.brainres.2007.03.091

    Article  CAS  PubMed  Google Scholar 

  218. Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145(1):256–264. doi:10.1016/j.neuroscience.2006.11.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mabon PJ, Weaver LC, Dekaban GA (2000) Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment. Exp Neurol 166(1):52–64. doi:10.1006/exnr.2000.7488

    Article  CAS  PubMed  Google Scholar 

  220. Maeda T, Kiguchi N, Kobayashi Y, Ozaki M, Kishioka S (2008) Pioglitazone attenuates tactile allodynia and thermal hyperalgesia in mice subjected to peripheral nerve injury. J Pharmacol Sci 108(3):341–347

    Article  CAS  PubMed  Google Scholar 

  221. Maiti P, Manna J, Veleri S, Frautschy S (2014) Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int 2014:495091. doi:10.1155/2014/495091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Malgouris C, Bardot F, Daniel M, Pellis F, Rataud J, Uzan A et al (1989) Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci 9(11):3720–3727

    CAS  PubMed  Google Scholar 

  223. Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990) Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252(1):419–427

    CAS  PubMed  Google Scholar 

  224. Mann CM, Lee JH, Hillyer J, Stammers AM, Tetzlaff W, Kwon BK (2010) Lack of robust neurologic benefits with simvastatin or atorvastatin treatment after acute thoracic spinal cord contusion injury. Exp Neurol 221(2):285–295. doi:10.1016/j.expneurol.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  225. Mann C, Lee JH, Liu J, Stammers AM, Sohn HM, Tetzlaff W, Kwon BK (2008) Delayed treatment of spinal cord injury with erythropoietin or darbepoetin – a lack of neuroprotective efficacy in a contusion model of cord injury. Exp Neurol 211(1):34–40. doi:10.1016/j.expneurol.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  226. Marble A (1971) Glibenclamide, a new sulphonylurea: whither oral hypoglycaemic agents? Drugs 1(2):109–115

    Article  CAS  PubMed  Google Scholar 

  227. Martin D, Thompson MA, Nadler JV (1993) The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 250(3):473–476

    Article  CAS  PubMed  Google Scholar 

  228. Martirosyan NL, Kalani MY, Bichard WD, Baaj AA, Gonzalez FL, Preul MC, Theodore N (2015) Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery. doi:10.1227/NEU.0000000000000638

    PubMed Central  Google Scholar 

  229. Matosin N, Frank E, Engel M, Lum JS, Newell KA (2014) Negativity towards negative results: a discussion of the disconnect between scientific worth and scientific culture. Dis Model Mech 7(2):171–173. doi:10.1242/dmm.015123

    Article  PubMed  PubMed Central  Google Scholar 

  230. Matsumoto T, Tamaki T, Kawakami M, Yoshida M, Ando M, Yamada H (2001) Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine (Phila Pa 1976) 26(4):426–430

    Article  CAS  Google Scholar 

  231. McKerracher L, Anderson KD (2013) Analysis of recruitment and outcomes in the phase I/IIa Cethrin clinical trial for acute spinal cord injury. J Neurotrauma 30(21):1795–1804. doi:10.1089/neu.2013.2909

    Article  PubMed  Google Scholar 

  232. McTigue DM, Tripathi R, Wei P, Lash AT (2007) The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205(2):396–406. doi:10.1016/j.expneurol.2007.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev (3):CD001447. doi:10.1002/14651858.CD001447.pub3

  234. Miller JD, Sakalas R, Ward JD, Young HF, Adams WE, Vries JK, Becker DP (1977) Methylprednisolone treatment in patients with brain tumors. Neurosurgery 1(2):114–117

    Article  CAS  PubMed  Google Scholar 

  235. Mu X, Azbill RD, Springer JE (2000) Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 17(9):773–780

    Article  CAS  PubMed  Google Scholar 

  236. Naftchi NE (1982) Prevention of damage in acute spinal cord injury by peptides and pharmacologic agents. Peptides 3(3):235–247

    Article  CAS  PubMed  Google Scholar 

  237. Oatway MA, Chen Y, Bruce JC, Dekaban GA, Weaver LC (2005) Anti-CD11d integrin antibody treatment restores normal serotonergic projections to the dorsal, intermediate, and ventral horns of the injured spinal cord. J Neurosci 25(3):637–647. doi:10.1523/JNEUROSCI.3960-04.2005

    Article  CAS  PubMed  Google Scholar 

  238. Otani K, Abe H, Kadoya S et al (1994) Beneficial effect of methylprednisolone sodium succinate in the treatment of acute spinal cord injury (translation of Japanese). Sekitsui Sekizui J 7:633–647

    Google Scholar 

  239. Oudega M, Vargas CG, Weber AB, Kleitman N, Bunge MB (1999) Long-term effects of methylprednisolone following transection of adult rat spinal cord. Eur J Neurosci 11(7):2453–2464

    Article  CAS  PubMed  Google Scholar 

  240. Ozdemir M, Cengiz SL, Gurbilek M, Ogun TC, Ustun ME (2005) Effects of magnesium sulfate on spinal cord tissue lactate and malondialdehyde levels after spinal cord trauma. Magnes Res 18(3):170–174

    CAS  PubMed  Google Scholar 

  241. Pahan K, Sheikh FG, Namboodiri AM, Singh I (1997) Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 100(11):2671–2679. doi:10.1172/JCI119812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79(3):340–350. doi:10.1002/jnr.20345

    Article  CAS  PubMed  Google Scholar 

  243. Pannu R, Christie DK, Barbosa E, Singh I, Singh AK (2007) Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 101(1):182–200. doi:10.1111/j.1471-4159.2006.04354.x

    Article  CAS  PubMed  Google Scholar 

  244. Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320(3):1002–1012. doi:10.1124/jpet.106.113472

    Article  CAS  PubMed  Google Scholar 

  245. Paterniti I, Impellizzeri D, Di Paola R, Esposito E, Gladman S, Yip P et al (2014) Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies. J Neuroinflammation 11:6. doi:10.1186/1742-2094-11-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B, Barrois M, Séronie-Vivien S, LeCesne A, Vassal G; Innovative Therapies with Children with Cancer European consortium (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14(21):7102–7109. doi:10.1158/1078-0432.CCR-08-0950

  247. Petitjean ME, Pointillart V, Dixmerias F, Wiart L, Sztark F, Lassie P et al (1998) Medical treatment of spinal cord injury in the acute stage. Ann Fr Anesth Reanim 17(2):114–122

    Article  CAS  PubMed  Google Scholar 

  248. Phang I, Werndle MC, Saadoun S, Varsos GV, Czosnyka M, Zoumprouli A, Papadopoulos MC (2015) Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure and vascular pressure reactivity index in patients with traumatic spinal cord injury. J Neurotrauma. doi:10.1089/neu.2014.3668

    PubMed  PubMed Central  Google Scholar 

  249. Philippon J, Grob R, Dagreou F, Guggiari M, Rivierez M, Viars P (1986) Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir (Wien) 82(3-4):110–114

    Article  CAS  Google Scholar 

  250. Pinzon A, Marcillo A, Pabon D, Bramlett HM, Bunge MB, Dietrich WD (2008) A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Exp Neurol 213(1):129–136. doi:10.1016/j.expneurol.2008.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pitts LH, Ross A, Chase GA, Faden AI (1995) Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 12(3):235–243

    Article  CAS  PubMed  Google Scholar 

  252. Plunet WT, Streijger F, Lam CK, Lee JH, Liu J, Tetzlaff W (2008) Dietary restriction started after spinal cord injury improves functional recovery. Exp Neurol 213(1):28–35. doi:10.1016/j.expneurol.2008.04.011

    Article  PubMed  Google Scholar 

  253. Pontius RG, Brockman HL, Hardy EG, Cooley DA, Debakey ME (1954) The use of hypothermia in the prevention of paraplegia following temporary aortic occlusion: experimental observations. Surgery 36(1):33–38

    CAS  PubMed  Google Scholar 

  254. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158(2):351–365. doi:10.1006/exnr.1999.7118

    Article  CAS  PubMed  Google Scholar 

  255. Popovich PG, Lemeshow S, Gensel JC, Tovar CA (2012) Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Exp Neurol 233(2):615–622. doi:10.1016/j.expneurol.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  256. Popovich PG, Tovar CA, Wei P, Fisher L, Jakeman LB, Basso DM (2012) A reassessment of a classic neuroprotective combination therapy for spinal cord injured rats: LPS/pregnenolone/indomethacin. Exp Neurol 233(2):677–685. doi:10.1016/j.expneurol.2011.11.045

    Article  CAS  PubMed  Google Scholar 

  257. Poynton AR, O’Farrell DA, Shannon F, Murray P, McManus F, Walsh MG (1997) An evaluation of the factors affecting neurological recovery following spinal cord injury. Injury 28(8):545–548

    Article  CAS  PubMed  Google Scholar 

  258. Pratt J, Rataud J, Bardot F, Roux M, Blanchard JC, Laduron PM, Stutzmann JM (1992) Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett 140(2):225–230

    Article  CAS  PubMed  Google Scholar 

  259. Prendergast MR, Saxe JM, Ledgerwood AM, Lucas CE, Lucas WF (1994) Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma 37(4):576–579; discussion 579-580

    Article  CAS  PubMed  Google Scholar 

  260. Prins ML, Matsumoto JH (2014) The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 55(12):2450–2457. doi:10.1194/jlr.R046706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Rabchevsky AG, Sullivan PG, Fugaccia I, Scheff SW (2003) Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats. J Neurotrauma 20(7):659–669. doi:10.1089/089771503322144572

    Article  PubMed  Google Scholar 

  262. Rabin SJ, Bachis A, Mocchetti I (2002) Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem 277(51):49466–49472. doi:10.1074/jbc.M203240200

    Article  CAS  PubMed  Google Scholar 

  263. Renaud LP, Blume HW, Pittman QJ, Lamour Y, Tan AT (1979) Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Science 205(4412):1275–1277

    Article  CAS  PubMed  Google Scholar 

  264. Resnick DK, Nguyen P, Cechvala CF (2001) Selective cyclooxygenase 2 inhibition lowers spinal cord prostaglandin concentrations after injury. Spine J 1(6):437–441

    Article  CAS  PubMed  Google Scholar 

  265. Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM (2007) Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci 25(6):1743–1747. doi:10.1111/j.1460-9568.2007.05447.x

    Article  PubMed  Google Scholar 

  266. Riegger T, Conrad S, Schluesener HJ, Kaps HP, Badke A, Baron C et al (2009) Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 158(3):1194–1199. doi:10.1016/j.neuroscience.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  267. Robertson CS, Foltz R, Grossman RG, Goodman JC (1986) Protection against experimental ischemic spinal cord injury. J Neurosurg 64(4):633–642. doi:10.3171/jns.1986.64.4.0633

    Article  CAS  PubMed  Google Scholar 

  268. Ross IB, Tator CH (1993) Spinal cord blood flow and evoked potential responses after treatment with nimodipine or methylprednisolone in spinal cord-injured rats. Neurosurgery 33(3):470–476; discussion 476-477

    CAS  PubMed  Google Scholar 

  269. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95(8):4635–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Samantaray S, Smith JA, Das A, Matzelle DD, Varma AK, Ray SK, Banik NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36(10):1809–1816. doi:10.1007/s11064-011-0498-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Sandestig A, Romner B, Grande PO (2014) Therapeutic hypothermia in children and adults with severe traumatic brain injury. Ther Hypothermia Temp Manag 4(1):10–20. doi:10.1089/ther.2013.0024

    Article  PubMed  PubMed Central  Google Scholar 

  272. Sandler AN, Tator CH (1976) Regional spinal cord blood flow in primates. J Neurosurg 45(6):647–659. doi:10.3171/jns.1976.45.6.0647

    Article  CAS  PubMed  Google Scholar 

  273. Sauerbeck AD, Laws JL, Bandaru VV, Popovich PG, Haughey NJ, McTigue DM (2015) Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 32(3):159–169. doi:10.1089/neu.2014.3497

    Article  PubMed  PubMed Central  Google Scholar 

  274. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S et al (2015) Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med 372(6):528–536. doi:10.1056/NEJMoa1408827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 6:10. doi:10.3389/fnins.2012.00010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Schwab JM, Conrad S, Elbert T, Trautmann K, Meyermann R, Schluesener HJ (2004) Lesional RhoA+ cell numbers are suppressed by anti-inflammatory, cyclooxygenase-inhibiting treatment following subacute spinal cord injury. Glia 47(4):377–386. doi:10.1002/glia.20031

    Article  PubMed  Google Scholar 

  277. Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG (2014) The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 258:121–129. doi:10.1016/j.expneurol.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  278. Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94(2 Suppl):245–256

    CAS  PubMed  Google Scholar 

  279. Sharma HS, Olsson Y, Cervos-Navarro J (1993) Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental study in the rat. Acta Neuropathol 85(2):145–153

    Article  CAS  PubMed  Google Scholar 

  280. Sharp KG, Yee KM, Stiles TL, Aguilar RM, Steward O (2013) A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury. Exp Neurol 248:321–337. doi:10.1016/j.expneurol.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  281. Sharp KG, Yee KM, Steward O (2014) A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury. Exp Neurol 254:1–11. doi:10.1016/j.expneurol.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  282. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113. doi:10.1371/journal.pmed.1000113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Shi R, Borgens RB (1999) Acute repair of crushed guinea pig spinal cord by polyethylene glycol. J Neurophysiol 81(5):2406–2414

    CAS  PubMed  Google Scholar 

  284. Shields CB, Zhang YP, Shields LB, Han Y, Burke DA, Mayer NW (2005) The therapeutic window for spinal cord decompression in a rat spinal cord injury model. J Neurosurg Spine 3(4):302–307. doi:10.3171/spi.2005.3.4.0302

    Article  PubMed  Google Scholar 

  285. Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S et al (2009) Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma 26(12):2257–2267. doi:10.1089/neu.2009.1021

    Article  PubMed  PubMed Central  Google Scholar 

  286. Simard JM, Popovich PG, Tsymbalyuk O, Caridi J, Gullapalli RP, Kilbourne MJ, Gerzanich V (2013) MRI evidence that glibenclamide reduces acute lesion expansion in a rat model of spinal cord injury. Spinal Cord 51(11):823–827. doi:10.1038/sc.2013.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Simard JM, Popovich PG, Tsymbalyuk O, Gerzanich V (2012) Spinal cord injury with unilateral versus bilateral primary hemorrhage – effects of glibenclamide. Exp Neurol 233(2):829–835. doi:10.1016/j.expneurol.2011.11.048

    Article  CAS  PubMed  Google Scholar 

  288. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z et al (2007) Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 117(8):2105–2113. doi:10.1172/JCI32041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Simard JM, Tsymbalyuk O, Keledjian K, Ivanov A, Ivanova S, Gerzanich V (2012) Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury. Exp Neurol 233(1):566–574. doi:10.1016/j.expneurol.2011.11.044

    Article  CAS  PubMed  Google Scholar 

  290. Simpson RK Jr, Baskin DS, Dudley AW, Bogue L, Rothenberg F (1991) The influence of long-term nifedipine or indomethacin therapy on neurologic recovery from experimental spinal cord injury. J Spinal Disord 4(4):420–427

    Article  PubMed  Google Scholar 

  291. Sipski ML, Jackson AB, Gomez-Marin O, Estores I, Stein A (2004) Effects of gender on neurologic and functional recovery after spinal cord injury. Arch Phys Med Rehabil 85(11):1826–1836

    Article  PubMed  Google Scholar 

  292. Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, Ehrenreich H (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 101(3):271–276

    CAS  PubMed  Google Scholar 

  293. Smith JS, Anderson R, Pham T, Bhatia N, Steward O, Gupta R (2010) Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model. J Bone Joint Surg Am 92(5):1206–1214. doi:10.2106/JBJS.I.00740

    Article  PubMed  PubMed Central  Google Scholar 

  294. Snapinn SM, Jiang Q (2007) Responder analyses and the assessment of a clinically relevant treatment effect. Trials 8:31. doi:10.1186/1745-6215-8-31

    Article  PubMed  PubMed Central  Google Scholar 

  295. Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E et al (2013) Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine (Phila Pa 1976) 38(15):1253–1259. doi:10.1097/BRS.0b013e3182895587

    Article  Google Scholar 

  296. Souvenir R, Doycheva D, Zhang JH, Tang J (2015) Erythropoietin in stroke therapy: friend or foe. Curr Med Chem 22(10):1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69(4):1592–1600

    Article  CAS  PubMed  Google Scholar 

  298. Sribnick EA, Matzelle DD, Ray SK, Banik NL (2006) Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 84(5):1064–1075. doi:10.1002/jnr.21016

    Article  CAS  PubMed  Google Scholar 

  299. Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88(8):1738–1750. doi:10.1002/jnr.22337

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Sribnick EA, Wingrave JM, Matzelle DD, Wilford GG, Ray SK, Banik NL (2005) Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J Neurosci Res 82(2):283–293. doi:10.1002/jnr.20622

    Article  CAS  PubMed  Google Scholar 

  301. Stanislaus R, Singh AK, Singh I (2001) Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J Neurosci Res 66(2):155–162

    Article  CAS  PubMed  Google Scholar 

  302. Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR, Marino RJ, Ditunno JF Jr, Coleman WP, Geisler FH, Guest J, Jones L, Burns S, Schubert M, van Hedel HJ, Curt A; EMSCI Study Group (2011) Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49(2):257–265. doi:10.1038/sc.2010.99

  303. Stein DG (2008) Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 57(2):386–397. doi:10.1016/j.brainresrev.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  304. Steward O, Popovich PG, Dietrich WD, Kleitman N (2012) Replication and reproducibility in spinal cord injury research. Exp Neurol 233(2):597–605. doi:10.1016/j.expneurol.2011.06.017

    Article  PubMed  Google Scholar 

  305. Steward O, Sharp K, Yee KM (2012) A re-assessment of the effects of intracortical delivery of inosine on transmidline growth of corticospinal tract axons after unilateral lesions of the medullary pyramid. Exp Neurol 233(2):662–673. doi:10.1016/j.expneurol.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  306. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD et al (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24(9):2182–2190. doi:10.1523/JNEUROSCI.5275-03.2004

    Article  CAS  PubMed  Google Scholar 

  307. Stirling DP, Liu S, Kubes P, Yong VW (2009) Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 29(3):753–764. doi:10.1523/JNEUROSCI.4918-08.2009

    Article  CAS  PubMed  Google Scholar 

  308. Stokes BT, Hollinden G, Fox P (1984) Improvement in injury induced hypocalcia by high-dose naloxone intervention. Brain Res 290(1):187–190

    Article  CAS  PubMed  Google Scholar 

  309. Streijger F, Lee JH, Duncan GJ, Ng MT, Assinck P, Bhatnagar T et al (2014) Combinatorial treatment of acute spinal cord injury with ghrelin, ibuprofen, C16, and ketogenic diet does not result in improved histologic or functional outcome. J Neurosci Res 92(7):870–883. doi:10.1002/jnr.23372

    Article  CAS  PubMed  Google Scholar 

  310. Streijger F, Plunet WT, Lee JH, Liu J, Lam CK, Park S et al (2013) Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One 8(11):e78765. doi:10.1371/journal.pone.0078765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Streijger F, Plunet WT, Plemel JR, Lam CK, Liu J, Tetzlaff W (2011) Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury. J Neurotrauma 28(6):1051–1061. doi:10.1089/neu.2010.1715

    Article  PubMed  Google Scholar 

  312. Stubbs SS, Morrell RM (1973) Intravenous methylprednisolone sodium succinate: adverse reactions reported in association with immunosuppresive therapy. Transplant Proc 5(2):1145–1146

    CAS  PubMed  Google Scholar 

  313. Stutzmann JM, Pratt J, Boraud T, Gross C (1996) The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport 7(2):387–392

    Article  CAS  PubMed  Google Scholar 

  314. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J et al (2008) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14(7):731–737. doi:10.1038/nm1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Suzer T, Coskun E, Islekel H, Tahta K (1999) Neuroprotective effect of magnesium on lipid peroxidation and axonal function after experimental spinal cord injury. Spinal Cord 37(7):480–484

    Article  CAS  PubMed  Google Scholar 

  316. Svensson LG, Hess KR, D’Agostino RS, Entrup MH, Hreib K, Kimmel WA et al (1998) Reduction of neurologic injury after high-risk thoracoabdominal aortic operation. Ann Thorac Surg 66(1):132–138

    Article  CAS  PubMed  Google Scholar 

  317. Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE et al (2011) The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 8:91. doi:10.1186/1742-2094-8-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Swartz KR, Fee DB, Joy KM, Roberts KN, Sun S, Scheff NN et al (2007) Gender differences in spinal cord injury are not estrogen-dependent. J Neurotrauma 24(3):473–480. doi:10.1089/neu.2006.0167

    Article  PubMed  Google Scholar 

  319. Tadie M, D’Arbigny P, Mathé J, Loubert G, Saint-Marc C, Menthonnex P (1999) Acute spinal cord injury: early care and treatment in a multicenter study with gacyclidine. Soc Neuroscience 25(1090):b138-0250014

    Google Scholar 

  320. Tadie M, Gaviria M, Mathé J-F, Menthonnex PH, Loubert G, Lagarrigue J, Saint-Marc C, Argenson C, Kempf CH, D’Arbigny P, Kamenca J-M, Privat A, Carli P (2003) Early care and treatment with a neuroprotective drug, Gacyclidine, in patients with acute spinal cord injury. Le Rachis 15(6):363–376

    Google Scholar 

  321. Tan LA, Kasliwal MK, Fontes RB, Fessler RG (2014) Local cooling for traumatic spinal cord injury. J Neurosurg Spine 21(5):845–847. doi:10.3171/2014.5.SPINE14472

    Article  PubMed  Google Scholar 

  322. Tanadini LG, Hothorn T, Jones LA, Lammertse DP, Abel R, Maier D (2015) Toward inclusive trial protocols in heterogeneous neurological disorders: prediction-based stratification of participants with incomplete cervical spinal cord injury. Neurorehabil Neural Repair. doi:10.1177/1545968315570322

    PubMed  Google Scholar 

  323. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M et al (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79(4):1177–1182

    Article  CAS  PubMed  Google Scholar 

  324. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26. doi:10.3171/jns.1991.75.1.0015

    Article  CAS  PubMed  Google Scholar 

  325. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86(3):483–492. doi:10.3171/jns.1997.86.3.0483

    Article  CAS  PubMed  Google Scholar 

  326. Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S et al (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076. doi:10.1073/pnas.0306239101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Thomas T, Bryant M, Clark L, Garces A, Rhodin J (2001) Estrogen and raloxifene activities on amyloid-beta-induced inflammatory reaction. Microvasc Res 61(1):28–39. doi:10.1006/mvre.2000.2267

    Article  CAS  PubMed  Google Scholar 

  328. Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine (Phila Pa 1976) 24(20):2134–2138

    Article  CAS  Google Scholar 

  329. Tseng MY, Hutchinson PJ, Richards HK, Czosnyka M, Pickard JD, Erber WN et al (2009) Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article. J Neurosurg 111(1):171–180. doi:10.3171/2009.3.JNS081332

    Article  CAS  PubMed  Google Scholar 

  330. Vale FL, Burns J, Jackson AB, Hadley MN (1997) Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 87(2):239–246. doi:10.3171/jns.1997.87.2.0239

    Article  CAS  PubMed  Google Scholar 

  331. van Middendorp JJ, Hosman AJ, Doi SA (2013) The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma 30(21):1781–1794. doi:10.1089/neu.2013.2932

    Article  PubMed  Google Scholar 

  332. Vandame D, Desmadryl G, Becerril Ortega J, Teigell M, Crouzin N, Buisson A et al (2007) Comparison of the pharmacological properties of GK11 and MK801, two NMDA receptor antagonists: towards an explanation for the lack of intrinsic neurotoxicity of GK11. J Neurochem 103(4):1682–1696. doi:10.1111/j.1471-4159.2007.04925.x

    Article  CAS  PubMed  Google Scholar 

  333. Varsos GV, Werndle MC, Czosnyka ZH, Smielewski P, Kolias AG, Phang I et al (2015) Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. J Neurosurg Spine 23(6):763–771. doi:10.3171/2015.3.SPINE14870

    Article  PubMed  Google Scholar 

  334. Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Fontana E, Gorio A, De Biasi S (2008) Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury. Neuroscience 151(2):452–466. doi:10.1016/j.neuroscience.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  335. Wallace MC, Tator CH (1986) Failure of naloxone to improve spinal cord blood flow and cardiac output after spinal cord injury. Neurosurgery 18(4):428–432

    Article  CAS  PubMed  Google Scholar 

  336. Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, Harrigan MR, Rozelle CJ, Ryken TC, Theodore N; American Association of Neurological Surgeons; Congress of Neurological Surgeons (2013) Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 60(Suppl 1);82–91. doi:10.1227/01.neu.0000430319.32247.7f

  337. Wang X, Budel S, Baughman K, Gould G, Song KH, Strittmatter SM (2009) Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma 26(1):81–95. doi:10.1089/neu.2007.0464

    Article  PubMed  PubMed Central  Google Scholar 

  338. Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT (2010) Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma 27(10):1769–1780. doi:10.1089/neu.2010.1348

    Article  PubMed  Google Scholar 

  339. Weaver LC, Gris D, Saville LR, Oatway MA, Chen Y, Marsh DR et al (2005) Methylprednisolone causes minimal improvement after spinal cord injury in rats, contrasting with benefits of an anti-integrin treatment. J Neurotrauma 22(12):1375–1387. doi:10.1089/neu.2005.22.1375

    Article  PubMed  Google Scholar 

  340. Wells JD, Hansebout RR (1978) Local hypothermia in experimental spinal cord trauma. Surg Neurol 10(3):200–204

    CAS  PubMed  Google Scholar 

  341. Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH et al (2014) Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study*. Crit Care Med 42(3):646–655. doi:10.1097/CCM.0000000000000028

    Article  PubMed  Google Scholar 

  342. Winkler T, Sharma HS, Stalberg E, Olsson Y (1993) Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord: an experimental study in the rat. Neuroscience 52(4):1057–1067

    Article  CAS  PubMed  Google Scholar 

  343. Winton MJ, Dubreuil CI, Lasko D, Leclerc N, McKerracher L (2002) Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 277(36):32820–32829. doi:10.1074/jbc.M201195200

    Article  CAS  PubMed  Google Scholar 

  344. Wu Y, Satkunendrarajah K, Teng Y, Chow DS, Buttigieg J, Fehlings MG (2013) Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma 30(6):441–452. doi:10.1089/neu.2012.2622

    Article  PubMed  PubMed Central  Google Scholar 

  345. Yan J, Li B, Chen JW, Jiang SD, Jiang LS (2012) Spinal cord injury causes bone loss through peroxisome proliferator-activated receptor-gamma and Wnt signalling. J Cell Mol Med 16(12):2968–2977. doi:10.1111/j.1582-4934.2012.01624.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Young W (1992) Role of calcium in central nervous system injuries. J Neurotrauma 9(Suppl 1):S9–S25

    PubMed  Google Scholar 

  347. Young W (2002) Spinal cord contusion models. Prog Brain Res 137:231–255

    Article  PubMed  Google Scholar 

  348. Young W, Flamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57(5):667–673. doi:10.3171/jns.1982.57.5.0667

    Article  CAS  PubMed  Google Scholar 

  349. Young W, Flamm ES, Demopoulos HB, Tomasula JJ, DeCrescito V (1981) Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. J Neurosurg 55(2):209–219. doi:10.3171/jns.1981.55.2.0209

    Article  CAS  PubMed  Google Scholar 

  350. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM et al (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420(6911):78–84. doi:10.1038/nature01158

    Article  CAS  PubMed  Google Scholar 

  351. Yune TY, Kim SJ, Lee SM, Lee YK, Oh YJ, Kim YC et al (2004) Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 21(3):293–306. doi:10.1089/089771504322972086

    Article  PubMed  Google Scholar 

  352. Zager EL, Ames A 3rd (1988) Reduction of cellular energy requirements. Screening for agents that may protect against CNS ischemia. J Neurosurg 69(4):568–579. doi:10.3171/jns.1988.69.4.0568

    Article  CAS  PubMed  Google Scholar 

  353. Zai L, Ferrari C, Dice C, Subbaiah S, Havton LA, Coppola G et al (2011) Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci 31(16):5977–5988. doi:10.1523/JNEUROSCI.4498-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Zai L, Ferrari C, Subbaiah S, Havton LA, Coppola G, Strittmatter S et al (2009) Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J Neurosci 29(25):8187–8197. doi:10.1523/JNEUROSCI.0414-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Zariffa J, Kramer JL, Fawcett JW, Lammertse DP, Blight AR, Guest J et al (2011) Characterization of neurological recovery following traumatic sensorimotor complete thoracic spinal cord injury. Spinal Cord 49(3):463–471. doi:10.1038/sc.2010.140

    Article  CAS  PubMed  Google Scholar 

  356. Zechariah A, ElAli A, Hermann DM (2010) Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice. Stroke 41(5):1008–1012. doi:10.1161/STROKEAHA.109.574418

    Article  CAS  PubMed  Google Scholar 

  357. Zhang B, Gensel JC (2014) Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 258:112–120. doi:10.1016/j.expneurol.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  358. Zhang Q, Hu W, Meng B, Tang T (2010) PPARgamma agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol Res 32(8):852–859. doi:10.1179/016164110X12556180206112

    Article  CAS  PubMed  Google Scholar 

  359. Zhang Q, Huang C, Tang T, Shi Q, Yang H (2011) Comparative neuroprotective effects of methylprednisolone and rosiglitazone, a peroxisome proliferator-activated receptor-gamma following spinal cord injury. Neurosciences (Riyadh) 16(1):46–52

    Google Scholar 

  360. Zhang Y, Metz LM, Yong VW, Bell RB, Yeung M, Patry DG, Mitchell JR (2008) Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci 35(2):185–191

    Article  CAS  PubMed  Google Scholar 

  361. Zhang L, Rzigalinski BA, Ellis EF, Satin LS (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 274(5294):1921–1923

    Article  CAS  PubMed  Google Scholar 

  362. Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea JR, Lee JK (2015) Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis 74:114–125. doi:10.1016/j.nbd.2014.10.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Guest MD, PhD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santamaria, A.J., Guest, J.D. (2017). The Current Status of Neuroprotection for Spinal Cord Injury. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics