Skip to main content

Functional Neuroanatomy of the Spinal Cord

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury

Abstract

The spinal cord (SC) is the part of the central nervous system (CNS) that is responsible for the motor, somato-sensory, and visceral innervation of the extremities, trunk, and large parts of the neck as well as all inner organs. Spinal nerves of the peripheral nervous system (PNS) serve as connections between the CNS and distal receptors and organs. And just as the SC controls many aspects of locomotion and visceral function, it also serves as an important relay station for incoming, afferent information from the periphery to central brain regions. It thus constitutes the major coordination hub for how humans unconsciously perceive their periphery and how our bodies react to this information, often involuntarily and without involvement of higher brain functions. And while the topography and cytoarchitecture of the human spinal cord is fairly well understood, the functional implications of some well-described structures remain elusive. Because of the central role the spinal cord plays in many forms of CNS impairment, a better understanding of the functional neuroanatomy of this structure is a prerequisite for addressing potential therapeutic approaches. This chapter gives an overview of spinal cord development, topography, cytoarchitecture, and functional assembly with a special focus on two aspects often compromised during spinal cord injury, namely, the control of micturition and the propriospinal neuron networks that hold great promise for the future improvement of therapies for patients suffering from spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams DS, Levin M (2013) Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352:95–122

    Article  CAS  PubMed  Google Scholar 

  2. Balczerski B, Zakaria S, Tucker AS, Borycki AG, Koyama E, Pacifici M, Francis-West P (2012) Distinct spatiotemporal roles of hedgehog signalling during chick and mouse cranial base and axial skeleton development. Dev Biol 371:203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1984) The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229:329–346

    Article  CAS  PubMed  Google Scholar 

  4. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, WEINMANN O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277

    Article  CAS  PubMed  Google Scholar 

  5. Barrington FJF (1925) The effect of lesions of the hind- and mid-brain on micturition in the cat. Q J Exp Physiol 15:81–102

    Article  Google Scholar 

  6. Barry D, Mcdermott K (2005) Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord. Glia 50:187–197

    Article  PubMed  Google Scholar 

  7. Benninghoff A, Denckhahn D (2004) Anatomy, 16th edn, vol 2. Urban and Fischer/Elsevier, Munich, Germany

    Google Scholar 

  8. Bittman KS, Panzer JA, Balice-Gordon RJ (2004) Patterns of cell-cell coupling in embryonic spinal cord studied via ballistic delivery of gap-junction-permeable dyes. J Comp Neurol 477:273–285

    Article  CAS  PubMed  Google Scholar 

  9. Blumenfeld H (2010) Neuroanatomy through clinical cases, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  10. Bonnet M, Gurfinkel S, Lipchits MJ, Popov KE (1976) Central programming of lower limb muscular activity in the standing man. Agressologie 17 SPECNO:35–42

    Google Scholar 

  11. Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Article  CAS  PubMed  Google Scholar 

  12. Brown GT (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Butler SJ, Bronner ME (2015) From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate. Dev Biol 398:135–146

    Article  CAS  PubMed  Google Scholar 

  14. Calancie B, Molano MR, Broton JG (2002) Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain 125:1150–1161

    Article  PubMed  Google Scholar 

  15. Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, Green BA (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117(Pt 5):1143–1159

    Article  PubMed  Google Scholar 

  16. Chizhikov VV, Millen KJ (2005) Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Dev Biol 277:287–295

    Article  CAS  PubMed  Google Scholar 

  17. Clowry GJ, Moss JA, Clough RL (2005) An immunohistochemical study of the development of sensorimotor components of the early fetal human spinal cord. J Anat 207:313–324

    Article  PubMed  PubMed Central  Google Scholar 

  18. Copp AJ, Greene ND (2013) Neural tube defects – disorders of neurulation and related embryonic processes. Wiley Interdiscip Rev Dev Biol 2:213–227

    Article  CAS  PubMed  Google Scholar 

  19. Cui D, Dougherty KJ, Machacek DW, Sawchuk M, Hochman S, Baro DJ (2006) Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons. Physiol Genomics 24:276–289

    Article  CAS  PubMed  Google Scholar 

  20. Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K (2015) Human spinal locomotor control is based on flexibly organized burst generators. Brain 138:577–588

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davis-Dusenbery BN, Williams LA, Klim JR, Eggan K (2014) How to make spinal motor neurons. Development 141:491–501

    Article  CAS  PubMed  Google Scholar 

  22. Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467

    Article  PubMed  Google Scholar 

  23. Dietz V (2010) Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 6:167–174

    Article  PubMed  Google Scholar 

  24. Dietz V (2011) Quadrupedal coordination of bipedal gait: implications for movement disorders. J Neurol 258:1406–1412

    Article  PubMed  Google Scholar 

  25. Dietz V, Fouad K, Bastiaanse CM (2001) Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14:1906–1914

    Article  CAS  PubMed  Google Scholar 

  26. Dobkin BH, Harkema S, Requejo P, Edgerton VR (1995) Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 9:183–190

    CAS  PubMed  Google Scholar 

  27. Duysens J, Pearson KG (1976) The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res 24:245–255

    Article  CAS  PubMed  Google Scholar 

  28. Duysens J, Tax AA, Trippel M, Dietz V (1992) Phase-dependent reversal of reflexly induced movements during human gait. Exp Brain Res 90:404–414

    Article  CAS  PubMed  Google Scholar 

  29. Duysens J, Van De Crommert HW (1998) Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture 7:131–141

    Article  CAS  PubMed  Google Scholar 

  30. Erni T, Dietz V (2001) Obstacle avoidance during human walking: learning rate and cross-modal transfer. J Physiol 534:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001) Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57:1543–1554

    Article  CAS  PubMed  Google Scholar 

  32. Filli L, Schwab ME (2015) Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res 10:509–513

    Article  PubMed  PubMed Central  Google Scholar 

  33. Flynn JR, Graham BA, Galea MP, Callister RJ (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809–822

    Article  CAS  PubMed  Google Scholar 

  34. Francius C, Clotman F (2014) Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 71:813–829

    Article  CAS  PubMed  Google Scholar 

  35. Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F (2013) Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 8:e70325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerasimenko YP, Makarovskii AN, Nikitin OA (2002) Control of locomotor activity in humans and animals in the absence of supraspinal influences. Neurosci Behav Physiol 32:417–423

    Article  PubMed  Google Scholar 

  37. Greene ND, Copp AJ (2014) Neural tube defects. Annu Rev Neurosci 37:221–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guertin PA (2012) Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurol 3:183

    PubMed  Google Scholar 

  39. Guertin PA, Steuer I (2009) Key central pattern generators of the spinal cord. J Neurosci Res 87:2399–2405

    Article  CAS  PubMed  Google Scholar 

  40. Haines DE, Harkey HL, Al-Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32:111–120

    Article  CAS  PubMed  Google Scholar 

  41. Hajihosseini M, Tham TN, Dubois-Dalcq M (1996) Origin of oligodendrocytes within the human spinal cord. J Neurosci 16:7981–7994

    CAS  PubMed  Google Scholar 

  42. Holley JA, Nornes HO, Morita M (1982) Guidance of neuritic growth in the transverse plane of embryonic mouse spinal cord. J Comp Neurol 205:360–370

    Article  CAS  PubMed  Google Scholar 

  43. Holstege G (2005) Micturition and the soul. J Comp Neurol 493:15–20

    Article  PubMed  Google Scholar 

  44. Holstege G (2010) The emotional motor system and micturition control. Neurourol Urodyn 29:42–48

    Article  PubMed  Google Scholar 

  45. Hooper SL (2001) Central pattern generators. In: Encyclopedia of Life Sciences. Wiley, Weinheim, Germany

    Google Scholar 

  46. Hou S, Rabchevsky AG (2014) Autonomic consequences of spinal cord injury. Compr Physiol 4:1419–1453

    Article  PubMed  Google Scholar 

  47. Jordan LM, Schmidt BJ (2002) Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies? Prog Brain Res 137:125–139

    Article  PubMed  Google Scholar 

  48. Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25:6025–6035

    Article  CAS  PubMed  Google Scholar 

  49. Keast JR, Smith-Anttila CJ, Osborne PB (2015) Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 3:53

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keller R, Shook D, Skoglund P (2008) The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 5:015007

    Article  PubMed  Google Scholar 

  51. Kenton K, Simmons J, Fitzgerald MP, Lowenstein L, Brubaker L (2007) Urethral and bladder current perception thresholds: normative data in women. J Urol 178:189–192; discussion 192

    Article  PubMed  Google Scholar 

  52. Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    Article  CAS  PubMed  Google Scholar 

  53. Le Bras B, Freal A, Czarnecki A, Legendre P, Bullier E, Komada M, Brophy PJ, Davenne M, Couraud F (2014) In vivo assembly of the axon initial segment in motor neurons. Brain Struct Funct 219:1433–1450

    Article  PubMed  Google Scholar 

  54. Leber SM, Sanes JR (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J Neurosci 15:1236–1248

    CAS  PubMed  Google Scholar 

  55. Light AR, Kavookjian AM (1988) Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III–V). J Comp Neurol 267:172–189

    Article  CAS  PubMed  Google Scholar 

  56. Liu JP, Laufer E, Jessell TM (2001) Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32:997–1012

    Article  CAS  PubMed  Google Scholar 

  57. Lundfald L, Restrepo CE, Butt SJ, Peng CY, Droho S, Endo T, Zeilhofer HU, Sharma K, Kiehn O (2007) Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur J Neurosci 26:2989–3002

    Article  PubMed  Google Scholar 

  58. Mantilla CB, Sieck GC (2008) Trophic factor expression in phrenic motor neurons. Respir Physiol Neurobiol 164:252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marklund U, Alekseenko Z, Andersson E, Falci S, Westgren M, Perlmann T, Graham A, Sundstrom E, Ericson J (2014) Detailed expression analysis of regulatory genes in the early developing human neural tube. Stem Cells Dev 23:5–15

    Article  CAS  PubMed  Google Scholar 

  60. Masahira N, Takebayashi H, Ono K, Watanabe K, Ding L, Furusho M, Ogawa Y, Nabeshima Y, Alvarez-Buylla A, Shimizu K, Ikenaka K (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev Biol 293:358–369

    Article  CAS  PubMed  Google Scholar 

  61. Masuda T, Shiga T (2005) Chemorepulsion and cell adhesion molecules in patterning initial trajectories of sensory axons. Neurosci Res 51:337–347

    Article  CAS  PubMed  Google Scholar 

  62. Matsushita M (1998) Ascending propriospinal afferents to area X (substantia grisea centralis) of the spinal cord in the rat. Exp Brain Res 119:356–366

    Article  CAS  PubMed  Google Scholar 

  63. Mccrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    Article  PubMed  Google Scholar 

  64. Mcdermott KW, Barry DS, Mcmahon SS (2005) Role of radial glia in cytogenesis, patterning and boundary formation in the developing spinal cord. J Anat 207:241–250

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mcnulty PA, Burke D (2013) Self-sustained motor activity triggered by interlimb reflexes in chronic spinal cord injury, evidence of functional ascending propriospinal pathways. PLoS One 8:e72725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Michel J, Van Hedel HJ, Dietz V (2007) Facilitation of spinal reflexes assists performing but not learning an obstacle-avoidance locomotor task. Eur J Neurosci 26:1299–1306

    Article  CAS  PubMed  Google Scholar 

  67. Michel J, Van Hedel HJ, Dietz V (2008) Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur J Neurosci 27:1867–1875

    Article  CAS  PubMed  Google Scholar 

  68. Miller S, Van Der Burg J, Van Der Meche F (1975) Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 91:217–237

    Article  CAS  PubMed  Google Scholar 

  69. Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F, Dimitrijevic MR (2004) Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42:401–416

    Article  CAS  PubMed  Google Scholar 

  70. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  71. Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD (2007) When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317:1079–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moghadam KS, Chen A, Heathcote RD (2003) Establishment of a ventral cell fate in the spinal cord. Dev Dyn 227:552–562

    Article  PubMed  Google Scholar 

  73. Molenaar I, Kuypers HG (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Res 152:429–450

    Article  CAS  PubMed  Google Scholar 

  74. Morrison J (1999) The activation of bladder wall afferent nerves. Exp Physiol 84:131–136

    Article  CAS  PubMed  Google Scholar 

  75. Nakajima K, Maier MA, Kirkwood PA, Lemon RN (2000) Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J Neurophysiol 84:698–709

    CAS  PubMed  Google Scholar 

  76. Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282

    Article  CAS  PubMed  Google Scholar 

  77. Nicolas G, Marchand-Pauvert V, Burke D, Pierrot-Deseilligny E (2001) Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans. J Physiol 533:903–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Niebroj-Dobosz I, Fidzianska A, Rafalowska J, Sawicka E (1980) Correlative biochemical and morphological studies of myelination in human ontogenesis. I. Myelination of the spinal cord. Acta Neuropathol 49:145–152

    Article  CAS  PubMed  Google Scholar 

  79. Nieuwenhuys R, Voogd J, Van Huijzen C (2008) The human central nervous system. Springer, Berlin/New York

    Book  Google Scholar 

  80. Nissen UV, Mochida H, Glover JC (2005) Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J Comp Neurol 483:30–47

    Article  PubMed  Google Scholar 

  81. Noto H, Roppolo JR, Steers WD, De Groat WC (1989) Excitatory and inhibitory influences on bladder activity elicited by electrical stimulation in the pontine micturition center in the rat. Brain Res 492:99–115

    Article  CAS  PubMed  Google Scholar 

  82. O’rahilly R, Muller F (2002) The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65:162–170

    Article  PubMed  CAS  Google Scholar 

  83. Onufrowicz B (1899) Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J Nerv Ment Dis 26:363–369

    Google Scholar 

  84. Patestas MA, Gartner LP (2006) Textbook of neuroanatomy. Wiley-Blackwell, Malden

    Google Scholar 

  85. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    Article  CAS  PubMed  Google Scholar 

  86. Petko M, Antal M (2000) Propriospinal afferent and efferent connections of the lateral and medial areas of the dorsal horn (laminae I-IV) in the rat lumbar spinal cord. J Comp Neurol 422:312–325

    Article  CAS  PubMed  Google Scholar 

  87. Phelps PE, Vaughn JE (1995) Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord. J Comp Neurol 355:38–50

    Article  CAS  PubMed  Google Scholar 

  88. Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM (2001) Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29:367–384

    Article  CAS  PubMed  Google Scholar 

  89. Pierrot-Deseilligny E (2002) Propriospinal transmission of part of the corticospinal excitation in humans. Muscle Nerve 26:155–172

    Article  PubMed  Google Scholar 

  90. Pierrot-Deseilligny E, Marchand-Pauvert V (2002) A cervical propriospinal system in man. Adv Exp Med Biol 508:273–279

    Article  PubMed  Google Scholar 

  91. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  92. Proudfit HK, Clark FM (1991) The projections of locus coeruleus neurons to the spinal cord. Prog Brain Res 88:123–141

    Article  CAS  PubMed  Google Scholar 

  93. Raab S, Plate KH (2007) Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol 113:607–626

    Article  CAS  PubMed  Google Scholar 

  94. Reina MA, De Leon Casasola Ode L, Villanueva MC, Lopez A, Maches F, De Andres JA (2004) Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia. Anesth Analg 98:1479–1485, table of contents

    Article  PubMed  Google Scholar 

  95. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    Article  CAS  PubMed  Google Scholar 

  96. Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45:359–382

    Article  CAS  PubMed  Google Scholar 

  97. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    Article  CAS  PubMed  Google Scholar 

  98. Rustioni A, Kuypers HG, Holstege G (1971) Propriospinal projections from the ventral and lateral funiculi to the motoneurons in the lumbosacral cord of the cat. Brain Res 34:255–275

    Article  CAS  PubMed  Google Scholar 

  99. Rybak IA, Dougherty KJ, Shevtsova NA (2015) Organization of the Mammalian Locomotor CPG: review of computational model and circuit architectures based on genetically identified spinal interneurons(1,2,3). eNeuro 2, p. 1–20

    Google Scholar 

  100. Rybak IA, Stecina K, Shevtsova NA, Mccrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sadler TW (2005) Embryology of neural tube development. Am J Med Genet C Semin Med Genet 135C:2–8

    Article  CAS  PubMed  Google Scholar 

  102. Sawada M, Matsumoto M, Sawamoto K (2014) Vascular regulation of adult neurogenesis under physiological and pathological conditions. Front Neurosci 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scharrer E (1945) Capillaries and mitochondria in neutrophil. J Comp Neurol 83:237–243

    Article  CAS  PubMed  Google Scholar 

  104. Faull RL, Schoenen J (2004) Spinal cord: cyto- and chemoarchitecture. In: The Human Nervous System, 2nd edn. Elsevier Academic Press, Amsterdam/Boston

    Google Scholar 

  105. Schoenen J, Faull RLM (2004) Spinal cord: Cyto- abd chemoarchitecture. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier Academic Press, Amsterdam/Boston, pp 190–232

    Chapter  Google Scholar 

  106. Sendtner M, Pei G, Beck M, Schweizer U, Wiese S (2000) Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res 301:71–84

    Article  CAS  PubMed  Google Scholar 

  107. Stifani N (2014) Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 8:293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J (2006) The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol 295:647–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun T, Hafler BP, Kaing S, Kitada M, Ligon KL, Widlund HR, Yuk DI, Stiles CD, Rowitch DH (2006) Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube. Dev Biol 292:152–164

    Article  CAS  PubMed  Google Scholar 

  110. Tahayori B, Koceja DM (2012) Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012:964843

    Article  PubMed  PubMed Central  Google Scholar 

  111. Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500:85–88

    Article  CAS  PubMed  Google Scholar 

  112. Ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442

    Article  PubMed  Google Scholar 

  113. Thomas JL, Baker K, Han J, Calvo C, Nurmi H, Eichmann AC, Alitalo K (2013) Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cell Mol Life Sci 70:1779–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296:496–505

    Article  CAS  PubMed  Google Scholar 

  115. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Valentino RJ, Wood SK, Wein AJ, Zderic SA (2011) The bladder-brain connection: putative role of corticotropin-releasing factor. Nat Rev Urol 8:19–28

    Article  CAS  PubMed  Google Scholar 

  117. Vallstedt A, Kullander K (2013) Dorsally derived spinal interneurons in locomotor circuits. Ann N Y Acad Sci 1279:32–42

    Article  CAS  PubMed  Google Scholar 

  118. Vandenabeele F, Creemers J, Lambrichts I (1996) Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat 189(Pt 2):417–430

    PubMed  PubMed Central  Google Scholar 

  119. Wannier T, Bastiaanse C, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141:375–379

    Article  CAS  PubMed  Google Scholar 

  120. Watson C, Paxinos G, Kayalioglu G (2009) The spinal cord. Academic Press, London, UK

    Google Scholar 

  121. Weidenheim KM, Bodhireddy SR, Rashbaum WK, Lyman WD (1996) Temporal and spatial expression of major myelin proteins in the human fetal spinal cord during the second trimester. J Neuropathol Exp Neurol 55:734–745

    Article  CAS  PubMed  Google Scholar 

  122. West WL, Yeomans DC, Proudfit HK (1993) The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague–Dawley rats. Brain Res 626:127–135

    Article  CAS  PubMed  Google Scholar 

  123. Williams PT, Martin JH (2015) Motor cortex activity organizes the developing rubrospinal system. J Neurosci 35:13363–13374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord. Plenum Press, New York

    Book  Google Scholar 

  125. Wiseman OJ, Brady CM, Hussain IF, Dasgupta P, Watt H, Fowler CJ, Landon DN (2002) The ultrastructure of bladder lamina propria nerves in healthy subjects and patients with detrusor hyperreflexia. J Urol 168:2040–2045

    Article  PubMed  Google Scholar 

  126. Wiseman OJ, Fowler CJ, Landon DN (2003) The role of the human bladder lamina propria myofibroblast. BJU Int 91:89–93

    Article  CAS  PubMed  Google Scholar 

  127. Ybot-Gonzalez P, Cogram P, Gerrelli D, Copp AJ (2002) Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129:2507–2517

    CAS  PubMed  Google Scholar 

  128. Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58:185–205

    Article  CAS  PubMed  Google Scholar 

  129. Zeman W, Innes JRM (1963) Craigie’s neuroanatomy of the rat. Academic, New York

    Google Scholar 

  130. Zhang J, Lanuza GM, Britz O, Wang Z, Siembab VC, Zhang Y, Velasquez T, Alvarez FJ, Frank E, Goulding M (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735–4759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhuang B, Sockanathan S (2006) Dorsal-ventral patterning: a view from the top. Curr Opin Neurobiol 16:20–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christian Schultz for helpful comments on the manuscript and Volker Dietz and Ilya Rybak for the kind permission to reprint images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Engelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelhardt, M., Sobotzik, JM. (2017). Functional Neuroanatomy of the Spinal Cord. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics