Skip to main content

Musical Variation and Improvisation Based on Multi-resolution Representations

  • Conference paper
  • First Online:
Music, Mind, and Embodiment (CMMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9617))

Included in the following conference series:

  • 1292 Accesses

Abstract

Musical creativity is one of the show pieces of Artificial Intelligence and during the last decades, many paths have been explored to capture musical style and to generate new music. One of the approaches exploits the similarities between music and language. In this paper, Fluid Construction Grammar, a state-of-the-art computational grammar is used to parse/analyse an existing piece, in order to create a variation on the song and generate an improvisation in the same style, using the same bi-directional grammar. A novel multi-resolution time representation to model musical melodies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alexander, C.: A city is not a tree. Architectural Forum (1965)

    Google Scholar 

  2. Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. J. New Music Res. 24(1), 51–73 (1995)

    Article  Google Scholar 

  3. Feld, S., Fox, A.: Music and language. Annu. Rev. Anthropol. 23, 25–53 (1994)

    Article  Google Scholar 

  4. Gerasymova, K., Steels, L., Van Trijp, R.: Aspectual morphology of russian verbs in fluid construction grammar. In: Proceedings of the 31th Annual Conference of the Cognitive Science Society, pp. 1370–1375. Cognitive Science Society gerasymova-09a. pdf Google Scholar (2009)

    Google Scholar 

  5. Gilbert, É., Conklin, D.: A probabilistic context-free grammar for melodic reduction (2007)

    Google Scholar 

  6. Gjerdingen, R.: Music in the Galant Style. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  7. Hoffmann, T., Trousdale, G.: The Oxford Handbook of Construction Grammar. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  8. Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., Friederici, A.D.: Music, language and meaning: brain signatures of semantic processing. Nat. Neurosci. 7(3), 302–307 (2004)

    Article  Google Scholar 

  9. Lartillot, O., Dubnov, S., Assayag, G., Bejerano, G.: Automatic modeling of musical style. In: Proceedings of the 2001 International Computer Music Conference, pp. 447–454 (2001)

    Google Scholar 

  10. Lerdahl, F., Jackendoff, R.: An overview of hierarchical structure in music. Music Percept. 1, 229–252 (1983)

    Article  Google Scholar 

  11. Minsky, M.: Music, Mind, and Brain. Springer, Heidelberg (1982)

    Google Scholar 

  12. Pachet, F.: The continuator: musical interaction with style. J. New Music Res. 32(3), 333–341 (2003)

    Article  Google Scholar 

  13. Pearce, M.T., Wiggins, G.A.: Expectation in melody: the influence of context and learning. Music Percept. 23(5), 377–405 (2006)

    Article  Google Scholar 

  14. Rohrmeier, M.: A generative grammar approach to diatonic harmonic structure. In: Proceedings of the 4th Sound and Music Computing Conference, pp. 97–100 (2007)

    Google Scholar 

  15. Rohrmeier, M.A., Koelsch, S.: Predictive information processing in music cognition. a critical review. Int. J. Psychophysiol. 83(2), 164–175 (2012)

    Article  Google Scholar 

  16. Slevc, L.R., Patel, A.D.: Meaning in music and language: three key differences: comment on towards a neural basis of processing musical semantics by Stefan Koelsch. Phys. Life Rev. 8(2), 110–111 (2011)

    Google Scholar 

  17. Steels, L.: Design Patterns in Fluid Construction Grammar, vol. 11. John Benjamins Publishing, Amsterdam (2011)

    Google Scholar 

  18. Steels, L., De Beule, J.: Unify and merge in fluid construction grammar. In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C.L. (eds.) EELC 2006. LNCS (LNAI), vol. 4211, pp. 197–223. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Todd, P.M., Loy, D.G.: Music and Connectionism. MIT Press, Cambridge (1991)

    Google Scholar 

  20. van Trijp, R.: Feature matrices and agreement: a case study for German case. Des. Patterns Fluid Constr. Grammar 11, 205 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the EU FP7 PRAISE project #318770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Loeckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Loeckx, J. (2016). Musical Variation and Improvisation Based on Multi-resolution Representations. In: Kronland-Martinet, R., Aramaki, M., Ystad, S. (eds) Music, Mind, and Embodiment. CMMR 2015. Lecture Notes in Computer Science(), vol 9617. Springer, Cham. https://doi.org/10.1007/978-3-319-46282-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46282-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46281-3

  • Online ISBN: 978-3-319-46282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics