Skip to main content

Phototrophic Microbial Mats

  • Chapter
  • First Online:
Book cover Modern Topics in the Phototrophic Prokaryotes

Abstract

Microbial mats are structured, small-scale microbial ecosystems, and similar as biofilms cover a substratum like a tissue. A general characteristic of a microbial mat is the steep physicochemical gradients that are the result of the metabolic activities of the mat microorganisms. Virtually every microbial mat is formed through autotrophic metabolism and through the fixation of atmospheric dinitrogen. Chemoautotrophic organisms fuel these processes in the absence of light. In illuminated environments photoautotrophic organisms are the driving force and these mats are subject of this chapter. In the vast majority of cases, primary production by the oxygenic phototrophic cyanobacteria is the basis of a diverse community that forms a living entity with a macroscopic habitus. This entity has its own physiology that is the result of interaction, communication, cooperation, and competition of the individual functional groups of microorganisms. Organic matter is remineralized and in sulfur-dominated environments sulfate-reducing bacteria are responsible for end-oxidation that leads to the production of sulfide, which is used by anoxygenic photoautotrophic bacteria. Aerobic and anaerobic anoxygenic phototrophic bacteria and proteorhodopsin-containing bacteria are important as secondary producers and take care of the decomposition of organic matter in a process that is aided by light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Bebout BM, Garcia-Pichel F (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5:1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350

    CAS  PubMed  Google Scholar 

  • Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. The ISME J 4:121–130

    Google Scholar 

  • Brauer VS, Stomp M, Bouvier T, Fouilland E, Leboulanger C, Confurius-Guns V, Weissing FJ, Stal LJ, Huisman J (2015) Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community. Front Microbiol 5:795

    Article  PubMed  PubMed Central  Google Scholar 

  • Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME J 6:863–874

    Article  CAS  PubMed  Google Scholar 

  • Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig Life 9:335–348

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Thamdrup B (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19:95–103

    Article  CAS  Google Scholar 

  • Carreira C, Staal M, Falkoski D, de Vries RP, Middelboe M, Brussaard CPD (2015) Disruption of photoautotrophic intertidal mats by filamentous fungi. Environ Microbiol 17:2910–2921

    Article  PubMed  Google Scholar 

  • Caumette P (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas. Syst Appl Microbiol 10:284–292

    Article  Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176

    Article  Google Scholar 

  • Caumette P, Imhoff JF, Suling J, Matheron R (1997) Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167:11–18

    Article  CAS  PubMed  Google Scholar 

  • Caumette P, Guyoneaud R, Duran R, Cravo-Laureau C, Matheron R (2007) Rhodobium pfennigii sp. nov., a phototrophic purple non-sulfur bacterium with unusual bacteriochlorophyll a antennae, isolated from a brackish microbial mat on Rangiroa atoll, French Polynesia. Int J Syst Evol Microbiol 57:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008) Photoferrotrophs thrive in an Archean ocean analogue. Proc Natl Acad Sci 105:15938–15943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csotonyi J, Swiderski J, Stackebrandt E, Yurkov V (2010) A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ Microbiol Rep 2:651–656

    Article  CAS  PubMed  Google Scholar 

  • D’Amelio ED, Cohen Y, Des Marais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147:213–220

    Article  PubMed  Google Scholar 

  • de Wit R, van Gemerden H (1987a) Oxidation of sulfide to thiosulfate by Microcoleus chthonoplastes. FEMS Microbiol Ecol 45:7–13

    Article  Google Scholar 

  • de Wit R, van Gemerden H (1987b) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45:117–126

    Article  Google Scholar 

  • de Wit R, van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76

    Article  Google Scholar 

  • de Wit R, van Boekel WHM, van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chthonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Article  Google Scholar 

  • de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol Ecol 17:117–135

    Article  Google Scholar 

  • Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat. FEMS Microbiol Ecol 68:46–58

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1998) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat Microb Ecol 14:235–240

    Article  Google Scholar 

  • Fourçans A, García de Oteyza T, Wieland A, Solé A, Diestra E, van Bleijswijk J, Grimalt JO, Kühl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  PubMed  CAS  Google Scholar 

  • Fourçans A, Solé A, Diestra E, Ranchou-Peyruse A, Esteve I (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson C, Malin G, Siddiqui PJA, Bergman B (1998) Aerobic nitrogen fixation is confined to a subset of cells in the non-heterocystous cyanobacterium Symploca PCC 8002. New Phytol 140:531–538

    Article  Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes G, Claes M, Dnajtschik-Piewak K, Riege H, Krumbein WE, Reineck HE (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29:61–74

    Article  Google Scholar 

  • Glaeser J, Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Grant J, Gust G (1987) Prediction of coastal sediment stability from photopigment context of mats of purple sulphur bacteria. Nature 330:244–246

    Article  Google Scholar 

  • Guyoneaud R, Matheron R, Baulaigue R, Podeur K, Hirschler A, Caumette P (1996) Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic Coasts (Prevost Lagoon, Arcachon Bay, Certes fishponds). Hydrobiologia 329:33–43

    Article  CAS  Google Scholar 

  • Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Rea A, Willison J, Duran R, Liesack W, Herbert R, Matheron R, Caumette P (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hamilton TL, Bryant DA, Macalady JL (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 18:325–340

    Article  CAS  PubMed  Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124

    Article  CAS  PubMed  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  CAS  PubMed  Google Scholar 

  • Hoehler TM, Albert DB, Alperin MJ, Bebout BM, Martens CS, Des Marais DJ (2002) Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek 81:575–585

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann D, Maldonado J, Wojciechowski MF, Garcia-Pichel F (2015) Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Environ Microbiol 17:3738–3753

    Article  CAS  PubMed  Google Scholar 

  • Howarth RW (1979) Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203:49–50

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Petri R, Süling J (1998) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the a-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48:793–798

    Google Scholar 

  • Jahnke LL, Turk-Kubo KA, Parenteau MN, Green SJ, Kubo MDY, Vogel M, Summons RE, Des Marais DJ (2014) Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. Geobiology 12:62–82

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol Oceanogr 22:657–666

    Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: micro-electrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Klatt JM, Meyer S, Häusler S, Macalady JL, de Beer D, Polerecky L (2016) Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME J 10:921–933

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870

    Article  PubMed  Google Scholar 

  • Kohls K, Abed RMM, Polerecky L, Weber M, de Beer D (2010) Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 12:567–575

    Article  CAS  PubMed  Google Scholar 

  • Lassen C, Ploug H, Jørgensen BB (1992) A fibre-optic scalar irradiance microsensor - application for spectral light measurements in sediments. FEMS Microbiol Ecol 86:247–254

    Article  Google Scholar 

  • Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Millern SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malin G, Walsby AE (1985) Chemotaxis of a cyanobacterium on concentration gradients of carbondioxide, bicarbonate and oxygen. J Gen Microbiol 131:2643–2652

    CAS  Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM, Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 71:8049–8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Alonso M, van Bleijswijk J, Gaju N, Muyzer G (2005) Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro delta: a combined morphological and molecular approach. FEMS Microbiol Ecol 52:339–350

    Article  CAS  PubMed  Google Scholar 

  • Meyer KM, Macalady JL, Fulton JM, Kump LR, Schaperdoth I, Freeman KH (2011) Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology 9:321–329

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Article  Google Scholar 

  • Nishimura Y, Muroga Y, Saito S, Shiba T, Takamiya K-I, Shioi Y (1994) DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40:287–296

    Article  CAS  Google Scholar 

  • Olson JB, Litaker RW, Paerl HW (1999) Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquat Microb Ecol 19:29–36

    Article  Google Scholar 

  • Omoregie EO, Crumbliss LL, Bebout BM, Zehr JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol 70:2119–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH (eds) The prokaryotes, vol 2. Springer, Heidelberg, pp 32–85

    Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30:27–40

    Article  CAS  Google Scholar 

  • Pearson HW, Howsley R, Kjeldsen CK, Walsby AE (1979) Aerobic nitrogenase activity associated with a non-heterocystous filamentous cyanobacterium. FEMS Microbiol Lett 5:163–169

    Article  CAS  Google Scholar 

  • Pierson BK, Oesterle A, Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett salt marsh, Massachusetts. FEMS Microbiol Ecol 45:365–376

    Article  CAS  Google Scholar 

  • Pierson BK, Parenteau MN, Griffin BM (1999) Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring. Appl Environ Microbiol 65:5474–5483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polerecky L, Bachar A, Schoon R, Grinstein M, Jørgensen BB, de Beer D, Jonkers HM (2007) Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain. Environ Microbiol 9:2007–2024

    Article  CAS  PubMed  Google Scholar 

  • Potts M, Krumbein WE, Metzger J (1978) Nitrogen fixation rates in anaerobic sediments determined by acetylene reduction, a new 15N field assay, and simultaneous total N 15N determination. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology vol 3: methods, metals and assessment. Ann Arbor Science, Ann Arbor Michigan, pp 753–769

    Google Scholar 

  • Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microbial Ecol 47:366–373. Appl Environ Microbiol 66:1038–1049

    Google Scholar 

  • Pringault O, Epping E, Guyoneaud R, Khalili A, Kühl M (1999) Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. Environ Microbiol 1:295–305

    Article  CAS  PubMed  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66:1038–1049

    Google Scholar 

  • Ranchou-Peyruse A, Moppert X, Hourcade E, Hernandez G, Caumette P, Guyoneaud R (2004) Characterization of brackish anaerobic bacteria involved in hydrocarbon degradation: a combination of molecular and culture-based approaches. Ophelia 58:255–262

    Article  Google Scholar 

  • Ranchou-Peyruse A, Herbert R, Caumette P, Guyoneaud R (2006) Comparison of cultivation-dependent and molecular methods for studying the diversity of anoxygenic purple phototrophs in sediments of an eutrophic brackish lagoon. Environ Microbiol 8:1590–1599

    Article  CAS  PubMed  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074

    Article  Google Scholar 

  • Richardson LL, Castenholz RW (1987) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring microbial mat. Appl Environ Microbiol 53:2142–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson LL, Castenholz RW (1989) Chemokinetic motility responses of the cyanobacterium Oscillatoria terebriformis. Appl Environ Microbiol 55:261–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Waterbury JB (1977) The synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol Lett 2:83–86

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Risatti JB, Capman WC, Stahl DA (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci U S A 91:10173–10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub BEM, van Gemerden H (1994) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbiol Ecol 13:185–195

    Article  CAS  Google Scholar 

  • Severin I, Stal LJ (2010) Diazotrophic microbial mats. In: Seckbach J, Oren A (eds) Microbial mats. Modern and ancient microorganisms in stratified systems. Springer, Heidelberg, pp 321–339

    Google Scholar 

  • Severin I, Acinas SG, Stal LJ (2010) Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 73:514–525

    CAS  PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145

    Article  Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegesmund M, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  PubMed  Google Scholar 

  • Sigalevich P, Baev MV, Teske A, Cohen Y (2000) Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. strain MB under exposure to increasing oxygen concentrations. Appl Environ Microbiol 66:5013–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  Google Scholar 

  • Stal LJ (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. S Afr J Bot 67:399–410

    Article  CAS  Google Scholar 

  • Stal LJ (2012) Microbial mats and stromatolites. In: Whitton BA (ed) The ecology of cyanobacteria. Springer, Dordrecht, pp 61–120

    Google Scholar 

  • Stal LJ, Heyer H (1987) Dark anaerobic nitrogen fixation (acetylene reduction) in the cyanobacterium Oscillatoria sp. FEMS Microbiol Ecol 45:227–232

    Article  CAS  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Stal LJ, van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125

    Article  CAS  Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes, rubredoxin and sulfur metabolism of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum. Arch Microbiol 132:204–210

    Article  CAS  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    Article  CAS  Google Scholar 

  • Steudel R, Holdt G, Visscher PT, van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437

    Article  CAS  Google Scholar 

  • Tang K-H, Feng X, Tang YJ, Blankenship RE (2009) Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114. PLoS One 4(10):e7233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Then J, Trüper HG (1981) The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis. Arch Microbiol 130:143–146

    Article  CAS  Google Scholar 

  • Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF (2010) Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 74:510–522

    Article  CAS  PubMed  Google Scholar 

  • Urmeneta J, Alcoba Ó, Razquín E, Tarroja E, Navarrete A, Guerrero R (1998) Oxygenic photosynthesis and respiratory activity in microbial mats of the Ebro delta, Spain, by oxygen exchange method. Curr Microbiol 37:151–155

    Article  CAS  PubMed  Google Scholar 

  • van der Meer MTJ, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, De Leeuw JW, Sinninghe Damste JS, Ward DM (2005) Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone national park. Appl Environ Microbiol 71:3978–3986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294

    Article  Google Scholar 

  • van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • van Gemerden H, de Wit R, Tughan CS, Herbert RA (1989a) Development of mass blooms of Thiocapsa roseopersicina on sheltered beaches on the Orkney Islands. FEMS Microbiol Lett 62:111–118

    Article  Google Scholar 

  • van Gemerden H, Tughan CS, de Wit R, Herbert RA (1989b) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102

    Article  Google Scholar 

  • Villanueva L, del Campo J, Guerrero R, Geyer R (2010) Intact phospholipid and quinone biomarkers to assess microbial diversity and redox state in microbial mats. Microb Ecol 60:226–238

    Article  CAS  PubMed  Google Scholar 

  • Villbrandt M, Stal LJ, Krumbein WE (1990) Interactions between nitrogen fixation and oxygenic photosynthesis in a marine cyanobacterial mat. FEMS Microbiol Ecol 74:59–72

    Article  CAS  Google Scholar 

  • Visscher PT, van Gemerden H (1991) Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57:3237–3242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PT, van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman and Hall, New York, pp 672–690

    Chapter  Google Scholar 

  • Visscher PT, Nijburg JW, van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155:75–81

    Article  CAS  Google Scholar 

  • Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86:283–293

    Article  CAS  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Wieland A, Kühl M, McGowan L, Fourçans A, Duran R, Caumette P, Garcia de Oteyza T, Grimalt JO, Solé A, Diestra E, Herbert RA (2003) Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition. Microb Ecol 46:371–390

    Article  CAS  PubMed  Google Scholar 

  • Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49:34–49

    Article  CAS  PubMed  Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov V, Gorlenko VM (1992) Ecophysiological peculiarities of phototrophic microbial communities of Bolsherechensky thermal springs. Microbiology 61:115–122

    Google Scholar 

  • Yurkov VV, van Gemerden H (1993) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat. Neth J Sea Res 31:57–62

    Article  Google Scholar 

  • Yurkov V, Krasilnikova EN, Gorlenko VM (1994) Thiosulfate metabolism in aerobic bacteriochlorophyll-a containing bacteria. Microbiology 63:181–188

    CAS  Google Scholar 

  • Zehr JP, Mellon M, Braun S, Litaker W, Steppe T, Paerl HW (1995) Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol 61:2527–2532

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 311975. This publication reflects the views only of the authors, and the European Union cannot be held responsible for any use, which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Stal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stal, L.J., Bolhuis, H., Cretoiu, M.S. (2017). Phototrophic Microbial Mats. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_9

Download citation

Publish with us

Policies and ethics