Skip to main content

Phototrophic Gemmatimonadetes: A New “Purple” Branch on the Bacterial Tree of Life

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Photosynthesis first emerged in prokaryotes over three billion years ago and represents one of the most fundamental biological processes on Earth. So far, species capable of performing (bacterio)chlorophyll-based phototrophy have been reported in seven bacterial phyla, i.e., Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Here we review the discovery, physiology, genomic characteristics, environmental distribution, and possible evolutionary origin of the bacterium Gemmatimonas phototrophica strain AP64, so far the only phototrophic member of the phylum Gemmatimonadetes. This organism was isolated from a freshwater lake in the Gobi Desert, North China in 2011. It contains fully functional type-2 photosynthetic reaction centers, but they seem to only serve as an auxiliary energy source. Its photosynthesis genes are located in a 42.3 kb long photosynthesis gene cluster which appear to originate from an ancient horizontal gene transfer from a purple phototrophic bacterium. A survey of biomarker genes of phototrophic Gemmatimonadetes bacteria (PGB) in public environmental genomics databases suggests that PGB are widely distributed in diverse environments, including air, river waters/sediment, estuarine waters, lake waters, biofilms, plant surfaces, intertidal sediments, soils, springs, and wastewater treatment plants, but none from marine waters or sediment. PGB make up roughly 0.4–11.9 % of whole phototrophic microbial communities in these habitats. The discovery of PGB presents a strong evidence that genes for anoxygenic phototrophy can be transferred between distant bacterial phyla, providing new insights into the evolution of bacterial photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BChl:

Bacteriochlorophyll

PGB:

Phototrophic Gemmatimonadetes bacteria

PGC:

Photosynthesis gene cluster

References

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538

    Article  CAS  PubMed  Google Scholar 

  • Boldareva-Nuianzina EN, Blahova Z, Sobotka R, Koblížek M (2013) Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 79(8):2596–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2015) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    PubMed  Google Scholar 

  • Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium. Science 317(5837):523–526

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc B 361(1474):1819–1834

    Article  CAS  Google Scholar 

  • Canniffe DP, Jackson PJ, Hollingshead S, Dickman MJ, Hunter CN (2013) Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme. Biochem J 450(2):397–405

    Article  CAS  PubMed  Google Scholar 

  • Cardona T (2016) Origin of bacteriochlorophyll a and the early diversification of photosynthesis. PLoS One 11:e0151250

    Article  PubMed  PubMed Central  Google Scholar 

  • Clingenpeel S, Macur RE, Kan J, Inskeep WP, Lovalvo D, Varley J, Mathur E, Nealson K, Gorby Y, Jiang H, LaFracois T, McDermott TR (2011) Yellowstone lake: high-energy geochemistry and rich bacterial diversity. Environ Microbiol 13(8):2172–2185

    Article  PubMed  Google Scholar 

  • DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77(17):6295–6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBruyn JM, Fawaz MN, Peacock AD, Dunlap JR, Nixon LT, Cooper KE, Radosevich M (2013) Gemmatirosa kalamazoonesis gen. nov., sp nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J Gen Appl Microbiol 59(4):305–312

    Article  CAS  PubMed  Google Scholar 

  • Dueholm MS, Albertsen M, Stokholm-Bjerregaard M, McIlroy SJ, Karst SM, Nielsen PH (2015) Complete genome sequence of the bacterium Aalborg_AAW-1, representing a novel family within the candidate phylum SR1. Genome Announc 3(3)

    Google Scholar 

  • Durbin AM, Teske A (2011) Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13:3219–3234

    Article  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton Univ Press, Princeton, p 484

    Google Scholar 

  • Fujita Y, Matsumoto H, Takahashi Y, Matsubara H (1993) Identification of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34(2):305–314

    CAS  PubMed  Google Scholar 

  • Gest H, Blankenship RE (2004) Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth Res 80(1–3):59–70

    Article  CAS  PubMed  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136(1):11–16

    Article  CAS  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, Von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH,-I, and-D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A 92(6):1941–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugliandolo C, Michaud L, Lo Giudice A, Lentini V, Rochera C, Camacho A, Maugeri TL (2016) Prokaryotic community in lacustrine sediments of Byers Peninsula (Livingston Island, Maritime Antarctica). Microb Ecol 71:387–400

    Article  PubMed  Google Scholar 

  • Hanada S, Sekiguchi Y (2014) The phylum Gemmatimonadetes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes - other major lineages of bacteria and the archaea. Springer, Berlin, pp 677–681

    Google Scholar 

  • Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V, Ulbrich P, Pecenkova T, Rebrekov D, Milgram A, Mazur M, Cox R, Kyrpides N, Ivanova N, Kapatral V, Los T, Lykidis A, Mikhailova N, Reznik G, Vasieva O, Fonstein M (2001) The Rhodobacter capsulatus genome. Photosynth Res 70(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Hauruseu D, Koblizek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78(20):7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2006) The phototrophic beta-proteobacteria. In: The prokaryotes. Springer, pp 593–601

    Google Scholar 

  • Jung J, Choi S, Hong H, Sung J-S, Park W (2014) Effect of red clay on diesel bioremediation and soil bacterial community. Microb Ecol 68(2):314–323

    Article  CAS  PubMed  Google Scholar 

  • Kamagata Y (2010) Phylum XXI. Gemmatimonadetes Zhang, Sekiguchi, Hanada, Hugenholtz, Kim, Kamagata and Nakamura 2003, 1161VP. In: Krieg NR, Staley JT, Brown DR et al. (eds) Bergey’s manual of systematic bacteriology, vol IV, 2 edn. Springer, New York, pp 781–784

    Google Scholar 

  • Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    Article  CAS  PubMed  Google Scholar 

  • Kirchman DL, Hanson TE (2013) Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep 5(2):188–199

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M, Mlčoušková J, Kolber Z, Kopecký J (2010) On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192(1):41–49

    Google Scholar 

  • Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci U S A 97(2):859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101(30):11013–11018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424(6950):741

    Article  CAS  PubMed  Google Scholar 

  • Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A 71(3):971–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146(3):1003–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RAC (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386

    Article  CAS  Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. Gustav Fischer, Jena, Germany

    Book  Google Scholar 

  • Nadson GA (1906) The morphology of inferior algae. III. Chlorobium limicola Nads., the green chlorophyll bearing microbe. Bull Jard Bot St Petersp 6:190

    Google Scholar 

  • Nagashima S, Nagashima KV (2013) Comparison of photosynthesis gene clusters retrieved from total genome sequences of purple bacteria. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria. Elsevier B.V., San Diego, pp 151–178

    Chapter  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409(6823):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean Era. Photosynt Res 88:109–117

    Article  CAS  Google Scholar 

  • Overmann J, Garcia-Pichel F (2013) The phototrophic way of life. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic communities and ecophysiology, 4th edn. Springer, Berlin, pp 203–257

    Google Scholar 

  • Pascual J, García-López M, Bills GF, Genilloud O (2016) Longimicrobium terrae gen. nov., sp. nov., a novel oligotrophic bacterium of the underrepresented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.000974

  • Petersen J, Brinkmann H, Bunk B, Michael V, Paeuker O, Pradella S (2012) Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol 14(10):2661–2672

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz Rw (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100(1):5–24

    Google Scholar 

  • Portillo MC, Leff JW, Lauber CL, Fierer N (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58(4):755–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298(5598):1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol 5(3):398–431

    Article  CAS  Google Scholar 

  • Saunders AH, Golbeck JH, Bryant DA (2013) Characterization of BciB: a ferredoxin-dependent 8-vinyl-protochlorophyllide reductase from the green sulfur bacterium Chloroherpeton thalassium. Biochemistry 52(47):8442–8451

    Article  CAS  PubMed  Google Scholar 

  • Schmidle W (1901) Neue Algen aus dem Gebiete des Oberrheins. Beih Bot Zentralbl 10:179–180

    Google Scholar 

  • Selyanin V, Hauruseu D, Koblížek M (2016) The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res 128(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, Pinter RY, Partensky F, Koonin EV, Wolf YI, Nelson N, Beja O (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461(7261):258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng P, Yu Y, Zhang G, Huang J, He L, Ding J (2016) Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake, China. Environ Earth Sci 75:479

    Article  Google Scholar 

  • Steffen MM, Li Z, Effler TC, Hauser LJ, Boyer GL, Wilhelm SW (2012) Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLoS One 7(8)

    Google Scholar 

  • Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Kuske CR (2012) Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 14(12):3247–3258

    Article  CAS  PubMed  Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2009) Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, the purple phototrophic bacteria, vol 28. Springer, Dordrecht, pp 17–29

    Google Scholar 

  • Takaichi S, Maoka T, Takasaki K, Hanada S (2010) Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2, 2’-dirhamnoside. Microbiology 156(3):757–763

    Article  CAS  PubMed  Google Scholar 

  • Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang TJ, Haggblom MM, Kerkhof LJ (2014) Bacterial genome replication at subzero temperatures in permafrost. ISME J 8:139–149

    Article  CAS  PubMed  Google Scholar 

  • Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ (2012) Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci U S A 109(40):15996–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Guo F, Liu L, Zhang T (2014) Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis. PLoS One 9(10), e109571

    Article  PubMed  PubMed Central  Google Scholar 

  • Winogradsky S (1888) Zur morphologie und Physiologie der Schwefelbakterien. Arthur Felix, Leipzig

    Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 95(25):14851–14856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62(3):695–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Feng F, Medova H, Dean J, Koblizek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111(21):7795–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Selyanin V, Lukes M, Dean J, Kaftan D, Feng F, Koblížek M (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 65:2410–2419

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Baumbach J, Vieira Barbosa EG, Azevedo V, Zhang C, Koblížek M (2016) Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ Microbiol Rep 8(1):139–149

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Zhang R, Koblizek M, Boldareva EN, Yurkov V, Yan S, Jiao N (2011) Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6(9):e25050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Sun D, Childers A, McDermott TR, Wang Y, Liles MR (2015) Three novel virophage genomes discovered from yellowstone lake metagenomes. J Virol 89(2):1278–1285

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The main content of this chapter is a compilation of three research papers we published before (Zeng et al. 2014, 2015, 2016). We thank Fuying Feng, Hana Medová, Jason Dean, Vadim Selyanin, Martin Lukes, David Kaftan, and Jan Baumbach and his group members in University of Southern Denmark for their help in different periods along our journey of researching this novel phototrophic bacterial group. Y.Z.’s postdoctoral research in University of Southern Denmark was supported by the ERC advanced grant “OXYGEN.” M.K. would like to acknowledge the support from Czech projects GAČR P501/12/G055 and Algatech Plus LO1416.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghui Zeng or Michal Koblížek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeng, Y., Koblížek, M. (2017). Phototrophic Gemmatimonadetes: A New “Purple” Branch on the Bacterial Tree of Life. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_5

Download citation

Publish with us

Policies and ethics