Skip to main content

Photosynthetic Purple Non Sulfur Bacteria in Hydrogen Producing Systems: New Approaches in the Use of Well Known and Innovative Substrates

  • Chapter
  • First Online:
Book cover Modern Topics in the Phototrophic Prokaryotes

Abstract

During the last few years, progress has been made in developing cleaner and more efficient bioenergy producing systems. Innovative processes and novel substrates were assessed at lab scale, in order to investigate and promote a sustainable development of photobiological hydrogen production. Recent and innovative processes and the use of novel substrates are discussed in this chapter. The main focus is on photofermentation systems conducted on biomass derived substrates, as these are considered to be the applicative goal of hydrogen production. Indeed, it is also present a short excursus on some synthetic media, investigated as interesting opportunities for enlarging applicability of the hydrogen technology. The number of new findings here reported demonstrates that it is worth continuing the efforts for increasing the knowledge on the photofermentation process for H2 production, in particular owing to the need of reducing the use of fossil fuels for mitigating the emissions of GHG in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DW:

Dry weight

OMWW:

Olive mill waste waters

PHA:

Polyhydroxyalkanoate

PHB:

Poly-β-hydroxybutyrate

PNSB:

Purple non sulfur bacteria

VFAs:

Short chain volatile fatty acids

VS:

Volatile solids

References

  • Abo-Hashesh M, Hallenbeck PC (2012) Fermentative hydrogen production. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, pp 77–92

    Google Scholar 

  • Abo-Hashesh M, Desaunay N, Hallenbeck PC (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. Bioresour Technol 128:513–517

    Article  CAS  PubMed  Google Scholar 

  • Adessi A, De Philippis R (2013) Purple bacteria: electron acceptors and donors. In: Lennarz WJ, Lane MD (eds) The encyclopedia of biological chemistry, vol 3. Academic, Elsevier, Waltham, MA, pp 693–699

    Google Scholar 

  • Adessi A, De Philippis R (2014) Photosynthesis and hydrogen production in purple non sulfur bacteria: fundamental and applied aspects. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38. Springer, pp 269–290

    Google Scholar 

  • Adessi A, De Philippis R, Hallenbeck PC (2012a) Combined systems for maximum substrate conversion. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, pp 107–126

    Google Scholar 

  • Adessi A, McKinlay JB, Harwood CS et al (2012b) A Rhodopseudomonas palustris nifA* mutant produces H2 from-containing vegetable wastes. Int J Hydrogen Energy 37:15893–15900

    Google Scholar 

  • Adessi A, De Philippis R, Corneli E et al (2016a) Produzione fotobiologica poliidrossibutirrato da biomasse con batteri rossi non sulfurei. Italian patent F1 S0061 12 IT 1, filed March 17, 2016

    Google Scholar 

  • Adessi A, Concato M, Sanchini A et al (2016b) Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl Microb Biotechnol 100:2917–2926

    Google Scholar 

  • Adessi A, Spini G, Presta L et al (2016c) Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL. Stand Genomic Sci 11:1

    Google Scholar 

  • Anam K, Habibi MS, Harwati TU et al (2012) Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. Int J Hydrogen Energy 37:15436–15442

    Article  CAS  Google Scholar 

  • Angelini LG, Ceccarini L, Nassi o Di Nasso N et al (2009) Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenerg 33:635–643

    Google Scholar 

  • Appels L, Lauwers J, Degrève J et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15:4295–4301

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2010a) Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: effects of light source and light intensity. Int J Hydrogen Energy 35:1595–1603

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2010b) Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int J Hydrogen Energy 35:6170–6178

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2010c) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations Int J Hydrogen Energy 35:1604–1612

    Google Scholar 

  • Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrogen Energy 36:7443–7459

    Article  CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan IK (2009a) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int J Hydrogen Energy 34:6181–6188

    Article  CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan IK (2009b) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrogen Energy 34:4305–4311

    Article  CAS  Google Scholar 

  • Arumugam A, Sandhya M, Ponnusami V (2014) Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol 164:170–176

    Article  CAS  PubMed  Google Scholar 

  • Bartacek J, Zabranska J, Lens PN (2007) Developments and constraints in fermentative hydrogen production. Biofuel Bioprod Bior 1:201–214

    Article  CAS  Google Scholar 

  • Cai J, Wang G (2012) Hydrogen production by a marine photosynthetic bacterium, Rhodovulum sulfidophilum P5, isolated from a shrimp pond. Int J Hydrogen Energy 37:15070–15080

    Article  CAS  Google Scholar 

  • Cai J, Wang G (2013) Screening and hydrogen-producing characters of a highly efficient H 2-producing mutant of Rhodovulum sulfidophilum P5. Bioresour Technol 142:18–25

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Wang G (2014) Hydrogen production from glucose by a mutant strain of Rhodovulum sulfidophilum P5 in single-stage photofermentation. Int J Hydrogen Energy 39:20979–20986

    Article  CAS  Google Scholar 

  • Cappai G, De Gioannis G, Friargiu M et al (2014) An experimental study on fermentative H2 production from food waste as affected by pH. Waste Manage 34:1510–1519

    Article  CAS  Google Scholar 

  • Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27:1167–1174

    Article  CAS  Google Scholar 

  • Cheng J, Su H, Zhou J et al (2011a) Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation. Int J Hydrogen Energy 36:2093–2101

    Article  CAS  Google Scholar 

  • Cheng J, Su H, Zhou J et al (2011b) Hydrogen production by mixed bacteria through dark and photo fermentation. Int J Hydrogen Energy 36:450–457

    Article  CAS  Google Scholar 

  • Cheng J, Xia A, Liu Y et al (2012) Combination of dark-and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. Int J Hydrogen Energy 37:13330–13337

    Article  CAS  Google Scholar 

  • Chookaew T, Sompong O, Prasertsan P (2015) Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int J Hydrogen Energy 40:7433–7438

    Article  CAS  Google Scholar 

  • Christopher K, Dimitrios R (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energ Environ Sci 5:6640–6651

    Article  CAS  Google Scholar 

  • Corneli E, Adessi A, Dragoni F et al (2016 submitted) Agroindustrial residues and energy crops for the production of H2 and PHB via photofermentation. Biores Technol (under review)

    Google Scholar 

  • Corneli E, Dragoni F, Adessi A et al (2016b) Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Bioresour Technol 211:509–518

    Article  CAS  PubMed  Google Scholar 

  • Das D, Veziroglu N (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Dipasquale L, Adessi A, d’Ippolito G et al (2015) Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Appl Microb Biotechnol 99:1001–1010

    Article  CAS  Google Scholar 

  • Dragoni F, Ragaglini G, Corneli E et al (2015) Giant reed (Arundo donax L.) for biogas production: land use saving and nitrogen utilisation efficiency compared with arable crops. Ital J Agron 10:192–201

    Article  Google Scholar 

  • El Bassam N (2010) Handbook of bioenergy crops: a complete reference to species, development and applications. Earthscan, London/Washington, DC

    Google Scholar 

  • Eroğlu E, Eroğlu İ, Gündüz U et al (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy 31:1527–1535

    Article  Google Scholar 

  • Eroğlu E, Eroğlu İ, Gündüz U et al (2008a) Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol 99:6799–6808

    Article  PubMed  Google Scholar 

  • Eroğlu İ, Tabanoğlu A, Gündüz U et al (2008b) Hydrogen production by Rhodobacter sphaeroides OU 001 in a flat plate solar bioreactor. Int J Hydrogen Energy 33:531–541

    Article  Google Scholar 

  • Eroğlu E, Eroğlu İ, Gündüz U et al (2009) Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenerg 33:701–705

    Article  Google Scholar 

  • Eroglu E, Gunduz U, Yucel M et al (2010) Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int J Hydrogen Energy 35:5293–5300

    Article  CAS  Google Scholar 

  • Eroğlu I, Özgür E, Eroğlu E et al (2014) Applications of photofermentative hydrogen production. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38. Springer, pp 237–267

    Google Scholar 

  • Fascetti E, D’addario E, Todini O et al (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23:753–760

    Article  CAS  Google Scholar 

  • Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuel Bioprod Bior 4:447–458

    Article  CAS  Google Scholar 

  • Fuji T, Nakazawa A, Sumi N et al (1983) Utilization of alcohols by Rhodopseudomonas sp No 7 isolated from n-propanol–enrichment cultures. Agr Biol Chem Tokio 47:2747–2753

    Article  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energ 144:73–95

    Article  CAS  Google Scholar 

  • Ghosh D, Tourigny A, Hallenbeck PC (2012a) Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. Int J Hydrogen Energy 37:2273–2277

    Article  CAS  Google Scholar 

  • Ghosh D, Sobro IF, Hallenbeck PC (2012b) Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration. Bioresour Technol 106:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Sobro IF, Hallenbeck PC (2012c) Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresour Technol 123:199–206

    Article  CAS  PubMed  Google Scholar 

  • Gómez X, Fernández C, Fierro J et al (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627

    Article  PubMed  Google Scholar 

  • Gosse JL, Engel BJ, Rey FE et al (2007) Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol Progr 23:124–130

    Article  CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E et al (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Guo CL, Zhu X, Liao Q et al (2011) Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresour Technol 102:8507–8513

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Liu Y (2016) Recent advances in hydrogen production by photosynthetic bacteria. Int J Hydrogen Energy 41:4446–4454

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D, Skonieczny MT et al (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G et al (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184

    Article  CAS  Google Scholar 

  • Hay JXW, Wu TY, Juan JC (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuel Bioprod Bior 7:334–352

    Article  CAS  Google Scholar 

  • Heiniger EK, Oda Y, Samanta SK et al (2012) How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 78:1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102:5153–5161

    Article  CAS  PubMed  Google Scholar 

  • Holladay JD, Hu J, King DL et al (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microb Biotechnol 39:87–93

    Article  CAS  Google Scholar 

  • IEA (International Energy Agency) (2009) Bioenergy–a sustainable and reliable energy source. International Energy Agency Bioenergy, Paris, France

    Google Scholar 

  • Ike A, Toda N, Tsuji N et al (1997) Hydrogen photoproduction from CO2-fixing microalgal biomass: application of halotolerant photosynthetic bacteria. J Ferment Bioeng 84:606–609

    Article  CAS  Google Scholar 

  • IRENA (2013) Statistical issues: bioenergy and distributed renewable energy. http://www.irena.org/DocumentDownloads/Publications/Statistical%20issues_bioenergy_and_distributed%20renewable%20_energy.pdf

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value‐added conversion of crude glycerol resulting from biodiesel production. Environ Progr 26:338–348

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F, Oztekin R et al (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34:2201–2207

    Article  CAS  Google Scholar 

  • Keskin T, Hallenbeck PC (2012) Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour Technol 112:131–136

    Article  CAS  PubMed  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Lee JH, Kang S et al (2014) Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products. Biotechnol Biofuel 7:79

    Article  Google Scholar 

  • Larimer FW, Chain P, Hauser L et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Belokopytov BF, Laurinavichius KS et al (2010) Towards the integration of dark-and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int J Hydrogen Energy 35:8536–8543

    Article  CAS  Google Scholar 

  • Lazaro CZ, Varesche MBA, Silva EL (2015) Sequential fermentative and phototrophic system for hydrogen production: an approach for Brazilian alcohol distillery wastewater. Int J Hydrogen Energy 40:9642–9655

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JM, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361

    Article  Google Scholar 

  • Liu BF, Ren NQ, Tang J et al (2010) Bio-hydrogen production by mixed culture of photo-and dark-fermentation bacteria. Int J Hydrogen Energy 35:2858–2862

    Article  CAS  Google Scholar 

  • Liu Y, Ghosh D, Hallenbeck PC (2015) Biological reformation of ethanol to hydrogen by Rhodopseudomonas palustris CGA009. Bioresour Technol 176:189–195

    Article  CAS  PubMed  Google Scholar 

  • Maeda, I., Mizoguchi, T., Miura, Y., Yagi, K., Shioji, N., & Miyasaka, H. (2000). Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater. Current microbiology, 40(3), 210–213

    Google Scholar 

  • Nonhebel S (2007) Energy from agricultural residues and consequences for land requirements for food production. Agr Syst 94:586–592

    Article  Google Scholar 

  • Özgür E, Mars AE, Peksel B et al (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energy 35:511–517

    Article  Google Scholar 

  • Ozmihci S, Kargi F (2010) Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. J Ind Microbiol Biot 37:341–347

    Article  CAS  Google Scholar 

  • Pachapur VL, Sarma SJ, Brar SK et al (2015) Co‐culture strategies for increased biohydrogen production. Int J Energ Res 39:1479–1504

    Article  Google Scholar 

  • Pattanamanee W, Chisti Y, Choorit W (2015) Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: effects of the mixture composition. Appl Energ 157:245–254

    Article  CAS  Google Scholar 

  • Pintucci C, Giovannelli A, Traversi ML et al (2013) Fresh olive mill waste deprived of polyphenols as feedstock for hydrogen photo-production by means of Rhodopseudomonas palustris 42OL. Renew Energ 51:358–363

    Article  CAS  Google Scholar 

  • Pintucci C, Padovani G, Giovannelli A et al (2015) Hydrogen photo-evolution by Rhodopseudomonas palustris 6A using pre-treated olive mill wastewater and a synthetic medium containing sugars. Energ Conver Manage 90:499–505

    Article  CAS  Google Scholar 

  • Pott RW, Howe CJ, Dennis JS (2013) Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. Bioresour Technol 130:725–730

    Article  CAS  PubMed  Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185

    Article  CAS  Google Scholar 

  • Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol 100:3513–3517

    Article  CAS  PubMed  Google Scholar 

  • Sargsyan H, Trchounian K, Gabrielyan L et al (2016) Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark-and photo-fermentative bacteria using distillers grains. Int J Hydrogen Energy 4:2377–2382

    Article  Google Scholar 

  • Schievano A, D’Imporzano G, Adani F (2009) Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J Environ Manage 90:2537–2541

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Waligorska M, Laniecki M (2010a) Hydrogen generation in photobiological process from dairy wastewater. Int J Hydrogen Energy 35:9624–9629

    Article  CAS  Google Scholar 

  • Seifert K, Waligorska M, Laniecki M (2010b) Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides OU 001. Int J Hydrogen Energy 35:4085–4091

    Article  CAS  Google Scholar 

  • Singh L, Wahid ZA (2015) Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem 21:70–80

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J et al (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34:1780–1786

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J et al (2010) Hydrogen production from water hyacinth through dark-and photo-fermentation. Int J Hydrogen Energy 35:8929–8937

    Article  CAS  Google Scholar 

  • Tian X, Liao Q, Zhu X et al (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov A, Kosourov S (2014) Immobilization of photosynthetic microorganisms for efficient hydrogen production. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38. Springer, pp 321–347

    Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrogen Energy 33:5404–5415

    Article  CAS  Google Scholar 

  • Vincenzini M, Marchini A, Ena A et al (1997) H and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762

    Article  CAS  Google Scholar 

  • Wang YZ, Liao Q, Zhu X et al (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101:4034–4041

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang G, Feng Y et al (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Article  CAS  PubMed  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microb Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Wu SC, Liou SZ, Lee CM (2012) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresour Technol 113:44–50

    Article  CAS  PubMed  Google Scholar 

  • Xia A, Cheng J, Ding L et al (2014) Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl Energ 120:23–30

    Article  CAS  Google Scholar 

  • Xie GJ, Liu BF, Ding J et al (2012) Enhanced photo-H2 production by Rhodopseudomonas faecalis RLD-53 immobilization on activated carbon fibers. Biomass Bioenerg 44:122–129

    Article  CAS  Google Scholar 

  • Yang H, Shi B, Ma H et al (2015) Enhanced hydrogen production from cornstalk by dark-and photo-fermentation with diluted alkali-cellulase two-step hydrolysis. Int J Hydrogen Energy 40:12193–12200

    Article  CAS  Google Scholar 

  • Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark-and photo-fermentation. Bioresour Technol 194:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhu X, Liao Q et al (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35:5284–5292

    Article  CAS  Google Scholar 

  • Zong W, Yu R, Zhang P et al (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenerg 33:1458–1463

    Article  CAS  Google Scholar 

  • Zürrer H, Bachofen R (1981) Hydrogen production from lactate and lactate-containing wastes by the photosynthetic bacterium Rhodospirillum rubrum. Stud Environ Sci 9:31–36

    Article  Google Scholar 

Download references

Acknowledgements

AA and RDP acknowledge CNR (Italian National Research Council) (EFOR project), and Ente Cassa di Risparmio di Firenze (Project HYDROLAB2) for funding their researches cited in this review. RDP would also like to mention the contribution given to his activities by the participation in the IEA-HIA (International Energy Agency—Hydrogen Implementation Agreement), Annex 34. EC acknowledges Scuola Superiore Sant’Anna of Pisa for supporting and funding her PhD research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Philippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adessi, A., Corneli, E., De Philippis, R. (2017). Photosynthetic Purple Non Sulfur Bacteria in Hydrogen Producing Systems: New Approaches in the Use of Well Known and Innovative Substrates. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_10

Download citation

Publish with us

Policies and ethics