Skip to main content

Neurophysiological and Behavioral Dysfunctions After Electromagnetic Field Exposure: A Dose Response Relationship

  • Chapter
  • First Online:
Perspectives in Environmental Toxicology

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

For decades, there has been an increasing concern about the potential hazards of ionizing and non-ionizing radiations on human health. This chapter provides several evidences related to pathophysiology of electromagnetic field (EMF) and its effects on different tissues and organs with special reference to neurophysiological and behavioral dysfunctions. Developing central nervous system (CNS) is extremely sensitive to EMF due to various factors especially due to presence of the high amount of water content, lipids and low amount of antioxidant enzymes. Therefore, the study is focused on the effects of radio frequency (RF) EMF and extremely low frequency magnetic field (ELF MF) on neurological disorders. The severity of effects always depends on exposure doses like, exposure duration, position of subjects, power density and field intensity, which could be measured in terms of specific absorption rate (SAR). There are several biomarkers, which are very useful to measure the radiation effects in both in vitro and in vivo model. The most intensely studied biomarkers by various researchers in CNS are protein kinase C, micronuclei, mitochondrial pathways, melatonin, calcium ion concentration, antioxidant enzymes like glutathione, superoxide dismutase, catalase etc. EMF may also lead to alterations in neurotransmission and consequently in cognitive and memory functions which are mainly linked to the brain hippocampus. Thus there are various histopathological aspects of hippocampus, which are studied and discussed in this chapter. Additionally, the dose response relationship between EMF and biological effects are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal A, Durairajanayagam D (2015) Are men talking their reproductive health away? Asian J Androl 17:433–434

    Google Scholar 

  • Agarwal A, Singh A, Hamada A et al (2011) Cell phones and male infertility: a review of recent innovations in technology and consequences. Int Braz J Urol 37:432–454

    Article  Google Scholar 

  • Ahlbom A, Feychting M, Green A et al (2009) ICNIRP (International Commission for Non-Ionizing Radiation Protection) Standing Committee on Epidemiology. Epidemiologic evidence on mobile phones and tumor risk: a review. Epidemiology 20:639–652

    Article  Google Scholar 

  • Akdag MZ, Celik MS, Ketani A et al (1999) Effect of chronic low-intensity microwave radiation on sperm count, sperm morphology, and testicular and epididymal tissues of rats. Electro Magnetobiol 18:133–145

    Google Scholar 

  • Ammari M, Jacquet A, Lecomte A et al (2008) Effect of head-only sub-chronic and chronic exposure to 900-MHz GSM electromagnetic fields on spatial memory in rats. Brain Inj 22:1021–1029

    Article  Google Scholar 

  • Anger WK (1991) Animal test systems to study behavioral dysfunctions of neurodegenerative disorders. Neurotoxicol 12:403–413

    Google Scholar 

  • Antonsson B, Montessuit S, Lauper S et al (2000) Bax oligomerization is required for channelforming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345:271–278

    Article  Google Scholar 

  • Baan R, Grosse Y, Lauby-Secretan B et al (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 12:624–626

    Article  Google Scholar 

  • Bagher Z, Shams AR, Farokhi M, Aghaei F (2008) Pyramidal cell damage in mouse brain after exposure to electromagnetic field. Iran J Neurol 7:142–148

    Google Scholar 

  • Barnett J, Timotijevic L, Shepherd R, Senior V (2007) Public responses to precautionary information from the Department of Health (UK) about possible health risks from mobile phones. Health Policy 82:240–250

    Article  Google Scholar 

  • Bas O, Odaci E, Mollaoglu H et al (2009) Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 25:377–384

    Article  Google Scholar 

  • Baureus KCL, Sommarin M, Persson BR et al (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402

    Article  Google Scholar 

  • Baverstock K (2000) Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat Res 454:89–109

    Article  Google Scholar 

  • Behari J (2009) Biological correlates of low-level electromagnetic-field exposure, general, applied and systems toxicology. Wiley, Book chapter 109. doi:10.1002/9780470744307.gat171

  • Bilici M, Efe H, Koroglu MA et al (2001) Antioxidative enzyme activities and lipid peroxidation in major depression; alteration by antidepressant treatments. J Affect Dis 64:43–51

    Article  Google Scholar 

  • Blackman CF, Benane SG, Elder JA et al (1980) Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics I:3S–43

    Google Scholar 

  • Bruel-Jungerman E, Davis S, Laroche S (2007) Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13:492–505

    Article  Google Scholar 

  • Canu N, Calissano P (2003) In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum 2:270–278

    Article  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    Google Scholar 

  • Chauhan P, Verma HN, Sisodia R, Kesari KK (2016) Microwave radiation (2.45 GHz) induced oxidative stress: whole body exposure effect on histopathology of Wistar rats. Electromagn Biol Med (in press) doi:10.3109/15368378.2016.1144063

  • Chou CK, Guy AW, McDougall J, Lai H (1985) Specific absorption rate in rats exposed to 2450-MHz microwaves under seven exposure conditions. Bioelectromagnetics 6:73–88

    Article  Google Scholar 

  • Christ A, Kuster N (2005) Differences in RF Energy absorption in the heads of adults and children. Bioelectromagnet Suppl 7:31–44

    Article  Google Scholar 

  • Ciani E, Groneng L, Voltattorni M et al (1996) Inhibition of free radical production of free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 728:1–6

    Article  Google Scholar 

  • Cleary SF (1995) Reproductive toxic effects of electromagnetic radiation. In: Witorsch RJ (ed) Reproductive toxicology, 2nd edn. Raven, New York, pp 263–280

    Google Scholar 

  • Criswell KA, Krishna G, Zielinski D et al (1998) Use of acridine orange in: flow cytometric assessment of micronuclei induction. Mutat Res 414:63–75

    Google Scholar 

  • D’Andrea JA, Adair ER, de Lorge JO (2003) Behavioral and cognitive effects of microwave exposure. Bioelectromagnet Suppl 6:S39–S62

    Article  Google Scholar 

  • Dahal KP (2013) Mobile communication and its adverse effects. Himalayan Phys 4:51–59

    Google Scholar 

  • Daniels WMU, Pietersen CY, Carstens ME, Stein DJ (2004) Maternal separation in rats leads to anxiety behaviour, and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis 19:13–24

    Google Scholar 

  • Dasdag S, Bilgin HM, Akdag MZ et al (2008) Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip 22:992–997

    Article  Google Scholar 

  • De-Iullis GN, Newey RJ, King BV et al (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4:e6446–e6454

    Article  Google Scholar 

  • Di Toro CG, Di Toro PA, Zieher LM, Guelman LR (2005) Sensitivity of cerebellar glutathione system to neonatal ionizing radiation exposure. Neurotoxicol 28:555–561

    Article  Google Scholar 

  • Digital Wireless Basics (DWB) (2007) Frequencies V Cellular, PCS, GSM, and Japanese Digital Cellular Frequencies. Accessed at www.privateline.com/PCS/Frequencies.htm

  • Dimbylow PJ, Mann SM (1994) SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Phys Med Biol 39:1537–1544

    Article  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  Google Scholar 

  • Ekert R, AD Tillotson D (1978) Potassium activation associated with intraneuronal free calcium. Science 200:437

    Google Scholar 

  • Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39:2093–2106

    Article  Google Scholar 

  • Falone S, Mirabilio A, Carbone MC et al (2008) Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol 40:2762–2770

    Article  Google Scholar 

  • Feychting M, Jonsson F, Pedersen NL, Ahlbom A (2003) Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 14:413–419

    Google Scholar 

  • Feychting M, Ahlbom A, Kheifet L (2005) EMF and health. Annu Rev Public Health 26:165–189

    Article  Google Scholar 

  • Fournier NM, Mach QH, Whissell PD, Persinger MA (2012) Neurodevelopmental anomalies of the hippocampus in rats exposed to weak intensity complex magnetic fields throughout gestation. Int J Dev Neurosci 30:427–433

    Article  Google Scholar 

  • Fu Y, Wang C, Wang J et al (2008) Long-term exposure to extremely low-frequency magnetic fields impairs spatial recognition memory in mice. Clin Exp Pharmacol Physiol 35:797–800

    Article  Google Scholar 

  • Gallagher M, Nicolle MM (1993) Animal models of normal aging: relationship between cognitive decline and markers in hippocampal circuitry. Behav Brain Res 57:155–162

    Article  Google Scholar 

  • Gandhi OP, Lazzi G, Furse CM (1996) Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz. IEEE Trans Microwave Theor Tech 44:1884–1897

    Article  Google Scholar 

  • García AM, Sisternas A, Hoyos SP (2008) Occupational exposure toextremely low frequency electric and magnetic fields and Alzheimerdisease: a meta-analysis. Int J Epidemiol 37:329–340

    Article  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  Google Scholar 

  • Grassi C, D’Ascenzo M, Torsello A (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315

    Article  Google Scholar 

  • Guido K, John CR (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  Google Scholar 

  • Håkansson N, Gustavsson P, Johansen C, Floderus B (2003) Neurode-generative diseases in welders and other workers exposed to highlevels of magnetic fields. Epidemiology 14:420–426

    Google Scholar 

  • Harvey L, Arnold B, Lawrence Z et al (1999) Molecular cell biology, 4th ed. Publisher W.H. Freeman & Co Ltd; 4 Revised edition, pp 197–433

    Google Scholar 

  • Heim C, Owens MJ, Plotsky PM, Nemeroff CB (1997) The role of early adverse life events in the etiology of depression and posttraumatic stress disorder. Focus on corticotropin-releasing factor. Ann NY Acad Sci 821:194–207

    Article  Google Scholar 

  • Hongpaisan J, Alkon DL (2007) A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci USA 104:19571–19576

    Article  Google Scholar 

  • Hossain H, Uma Devi P (2001) Effect of irradiation at the early foetal stage on adult brain function of mouse: learning and memory. Int J Rad Biol 77:581–585

    Article  Google Scholar 

  • Huang KP, Nakabayashi H, Huang FL (1986) Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase. Proc Natl Acad Sci USA 83:8535–8539

    Article  Google Scholar 

  • Hug K, Röösli M, Rapp R (2006) Magnetic field exposure and neurodegenerative diseases-recent epidemiological studies. Soz Praventivmed 51:210–220

    Google Scholar 

  • Huss A, Spoerri A, Egger M, Röösli M, Swiss National Cohort Study (2009) Residence near power lines and mortality from neuro-degenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol 169:167–175

    Google Scholar 

  • IARC (2002) Non-ionizing radiation, Part 1: static and Extremely Low Frequency (ELF) electric and magnetic fields. In: IARC Monographs on the evaluation of carcinogenic risks to humans, vol 80. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522

    Google Scholar 

  • IEGMP (2000) Mobile phones and health. Report of an Independent Expert Group on Mobile Phones. Chilton, IEGMP

    Google Scholar 

  • Ivancsits S, Diem E, Pilger A et al (2002) Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res 519:1–13

    Article  Google Scholar 

  • Ivancsits S, Diem E, Jahn O, Rudiger HW (2003a) Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health 76:431–436

    Article  Google Scholar 

  • Ivancsits S, Diem E, Jahn O, Rudiger HW (2003b) Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev 124:847–850

    Article  Google Scholar 

  • Janać B, Tovilović G, Tomić M et al (2009) Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen Physiol Biophys 28:41–46

    Google Scholar 

  • Janković SM, Milošev MZ, Novaković MLJ (2014) The effects of microwave radiation on microbial cultures. Hosp Pharmacol 1:102–108

    Google Scholar 

  • Jaworska A, Wojewodzka M, De Angelis P (2002) Radiation sensitivity and the status of some radiation sensitivity markers in relatively sensitive lymphoid cells. Radiats Biol Radioecol 42:595–599

    Google Scholar 

  • Jerman T, Kesner RP, Hunsaker MR (2006) Disconnection analysis of CA3 and DG in mediating encoding but not retrieval in a spatial maze learning task. Learn Mem 13:458–464

    Article  Google Scholar 

  • Kang XK, Li LW, Leong MS, Kooi PS (2001) A method of moments study of SAR inside spheroidal human head and current distribution among handset wireless antennas. J Electromag Waves Appl 15:61

    Article  Google Scholar 

  • Katsir G, Parola AH (1998) Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun 252:753–756

    Article  Google Scholar 

  • Katz B, Milledi R (1967) The timing of calcium action during neuromuscular transmission. J Physiol (Lond) 189:535

    Google Scholar 

  • Keetley V, Wood AW, Spong J, Stough C (2006) Neuropsychological sequelae of digital mobile phone exposure in humans. Neuropsychologia 44:1843–1848

    Article  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  Google Scholar 

  • Kesari KK, Behari J (2009) Fifty microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol 158:126–139

    Article  Google Scholar 

  • Kesari KK, Behari J (2010) Effect of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem 92:1135–1147

    Article  Google Scholar 

  • Kesari KK, Behari J (2012) Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med 31:213–222

    Article  Google Scholar 

  • Kesari KK, Behari J, Kumar S (2010a) Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol 86:334–343

    Article  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2010b) Mobile phone usage and male infertility in Wistar rats. Indian J Exp Biol 48:987–992

    Google Scholar 

  • Kesari KK, Kumar S, Behari J (2011a) Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Appl Biochem Biotechnol 164:546–559

    Article  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2011b) 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 30:219–234

    Article  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2012) Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med 31:213–222

    Article  Google Scholar 

  • Kesari KK, Kumar S, Nirala J et al (2013) Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem Biophys 65:85–96

    Article  Google Scholar 

  • Kesari KK, Meena R, Nirala J et al (2014) Effect of 3G Cell Phone Exposure with Computer Controlled 2-D Stepper Motor on Non-Thermal Activation of the hsp27/p38MAPK Stress Pathway in Rat Brain. Cell Biochem Biophy 68:347–358

    Article  Google Scholar 

  • Kesari KK, Luukkonen J, Juutilainen J, Naarala J (2015) Genomic instability induced by 50 Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment. Mutat Res Genet Toxicol Environ Mutagen 794:46–51

    Article  Google Scholar 

  • Kesari KK, Juutilainen J, Luukkonen J, Naarala J (2016) Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface 13:1–10

    Google Scholar 

  • Khanzode SD, Dakhale GN, Khanzode SS (2003) Oxidative damage and major depression. Redox Rep 8:365–370

    Article  Google Scholar 

  • Khayyat LI, Abou-Zaid D (2009) The effect of isothermal non-ionizing electromagnetic field on the liver of mice. Egypt J Exp Biol (Zool) 5:93–99

    Google Scholar 

  • Kitaoka K, Kitamura M, Aoi S et al (2013) Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic-pituitary-adrenal axis in mice. Bioelectromagnetics 34:43–51

    Article  Google Scholar 

  • Klann E, Sweatt JD (2008) Altered protein synthesis is a trigger for long-term memory formation. Neurobiol Learn Mem 89:247–259

    Article  Google Scholar 

  • Klur S, Muller C, Pereira de Vasconcelos A et al (2009) Hippocampal-dependent spatial memory functions might be lateralized in rats: an approach combining gene expression profiling and reversible inactivation. Hippocampus 19:800–816

    Article  Google Scholar 

  • Koivisto M, Revonsuo A, Krause C et al (2000) Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. NeuroReport 11:413–415

    Article  Google Scholar 

  • Korkalainen M, Huumonen K, Naarala J et al (2012) Dioxininduces genomic instability in mouse embryonic fibroblasts. PLoS ONE 7:e37895

    Article  Google Scholar 

  • Kumar S, Kesari K, Behari J (2010a) The influence of microwave exposure on male fertility. Fertil Steril 95:1500–1502

    Article  Google Scholar 

  • Kumar S, Kesari KK, Behari J (2010b) Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian J Exp Biol 48:586–592

    Google Scholar 

  • Kumar S, Kesari KK, Behari J (2011) Synergistic effect of 2.45 GHz and pulsed magnetic field on reproductive pattern of male Wistar rats. Clinics (Sao Paulo) 66:1237–1245

    Article  Google Scholar 

  • Kumar S, Nirala JP, Behari J et al (2014) Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J Exp Biol 52:890–897

    Google Scholar 

  • Kumari K, Meena R, Kumar S et al (2012) Radiofrequency electromagnetic field exposure effects on antioxidant enzymes and liver function tests. LS Int J Life Sci 1:233–239

    Article  Google Scholar 

  • Kunjilwar KK, Behari J (1993) Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Res 601:321–324

    Article  Google Scholar 

  • Lai H (1994) Neurological effects of microwave irradiation. In: Lin JC (ed) Advances in electromagnetic fields in living systems, vol 1. Plenum Press, New York, pp 27–80

    Chapter  Google Scholar 

  • Lai H, Singh NP (1995) Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207–210

    Google Scholar 

  • Lai H (2002) Neurological effects of radiofrequency electromagnetic, EMF-Scientific and legal Issues, Theory and Evidence of EMF Biological and Health Effects in Catania, Sicily, Italy, Sept 13–14

    Google Scholar 

  • Lee I, Solivan F (2008) The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task. Learn Mem 15:357–367

    Article  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATPdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  Google Scholar 

  • Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  Google Scholar 

  • Liu R, Liu W, Doctrow SR, Baudry M (2003) Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species. J Neurochem 85:492–502

    Article  Google Scholar 

  • Liu T, Wang S, He L, Ye K (2008) Chronic exposure to low intensity magnetic field improves acquisition and maintenance of memory. NeuroReport 19:549–552

    Article  Google Scholar 

  • Llinas R, Nicholson C (1975) Calcium role in depolarization-secretion coupling: an aequorin study in squid giant-synapse. Proc Natl Acad Sci USA 72:187

    Google Scholar 

  • Luukkonen J, Liimatainen A, Juutilainen J, Naarala J (2014) Induction of genomicinstability, oxidative processes, and mitochondrial activity by 50 Hz magneticfields in human SH-SY5Y neuroblastoma cells. Mutat Res/Fundam Mol Mech Mutagen 760:33–41

    Article  Google Scholar 

  • Lyskov EB, Aleksanian ZA, Iousmiaki V et al (1993a) Neurophysiologic effects of short-term exposure to ultra-low-frequency magnetic field. Fiziol Cheloveka 19:121–125

    Google Scholar 

  • Lyskov EB, Juutilainen J, Jousmaki V et al (1993b) Effects of 45-Hz magnetic fields on the functional state of the human brain. Bioelectromagnetics 14:87–95

    Article  Google Scholar 

  • Lyskov E, Sandstrom M, Mild KH (2001) Provocation study of persons with perceived electrical hypersensitivity and controls using magnetic field exposure and recording of electrophysiological characteristics. Bioelectromagnetics 22:45

    Article  Google Scholar 

  • Manikonda PK, Rajendra P, Devendranath D et al (2007) Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett 413:145–149

    Google Scholar 

  • Marino AA, Kolomytkin OV, Frilot C (2003) Extracellular currents alter gap junction intercellular communication in synovial fibroblasts. Bioelectromagnetics 24:199–205

    Article  Google Scholar 

  • Marzatico F, Porta C, Moroni M et al (2000) In vitro antioxidant properties of amifostine (WR-2721, Ethyol). Cancer Chemother Pharmacol 45:172–176

    Article  Google Scholar 

  • Maskey D, Kim M, Aryal B et al (2010) Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 1313:232–241

    Article  Google Scholar 

  • Masuda H, Hirata A, Kawai H et al (2011) Local exposure of the rat cortex to radiofrequency electromagnetic fields increases local cerebral blood flow along with temperature. J Appl Physiol 110:142–148

    Article  Google Scholar 

  • Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  Google Scholar 

  • Mausset AL, de Seze R, Montpeyroux F, Privat A (2001) Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semiquantitative immunohistochemistry. Brain Res 912:33–46

    Article  Google Scholar 

  • Meena R, Kajal K, Kumar J et al (2014) Therapeutic approaches of melatonin in microwave radiations induced oxidative stress mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med 33:81–91

    Article  Google Scholar 

  • Migliore L, Coppedè F, Fenech M, Thomas P (2011) Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 26:85–92

    Article  Google Scholar 

  • Miranda R, Blanco E, Begega A et al (2006) Hippocampal and caudate metabolic activity associated with different navigational strategies. Behav Neurosci 120:641–650

    Article  Google Scholar 

  • Moghimi A, Baharara J, Musavi SS (2009) Effect of mobile phone microwaves on fetal period of BALB/c mice in histological characteristics of hippocampus and learning behaviors. Iran J Basic Med Sci 150:150–157

    Google Scholar 

  • Morgane PJ, Austi- Lafrance RJ, Bronzino JD et al (1992) Malnutrition and the developing central nervous system. In: Issacson RL, Jensen KF (eds) The vulnerable brain and environmental risks, vol 1: Malnutrition and hazard assessment. Plenum, New York, pp 3–44

    Google Scholar 

  • Morris RGM (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  Google Scholar 

  • Morris RGM, Garrud P, Rawlins JNP, O’Keefe J (1982) Place navigation is impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  Google Scholar 

  • Muchmore SW, Sattler M, Liang H et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  Google Scholar 

  • Narayanan SN, Kumar RS, Potu BK et al (2009) Spatial memory perfomance of wistar rats exposed to mobile phone. Clinics 64:231–234

    Article  Google Scholar 

  • Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364

    Article  Google Scholar 

  • Newton AC (1995) Protein-kinase-C—structure, function, and regulation. J Biol Chem 270:28495–28498

    Article  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  Google Scholar 

  • Oktem F, Ozguner F, Mollaoglu H et al (2005) Oxidative damage in the kidney induced by 900 MHz emitted mobile phone: protection by melatonin. Arch Med Res 36:350–355

    Article  Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places past—spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116

    Article  Google Scholar 

  • Papageorgiou CC, Nanou ED, Tsiafakis VG, Kapareliotis E, Kontoangelos KA, Capsalis CN, Rabavilas AD, Soldatos CR (2006) Acute mobile phone effects on pre-attentive operation. Neurosci Lett F397:99–103

    Google Scholar 

  • Parker PJ, Stabel S, Waterfield MD (1984) Purification to homogeneity of protein kinase C from bovine brain-identity with the phorbol ester receptor. EMBO J 3:953–959

    Google Scholar 

  • Paulraj R, Behari J (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596:76–80

    Article  Google Scholar 

  • Paulraj R, Behari J, Rao AR (1999) Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian J Biochem Biophys 36:337–340

    Google Scholar 

  • Petito CK, Halaby IA (1993) Relationship between ischemia and ischemic neuronal necrosis to astrocyte expression of glial fibrillary acidic protein. Int J Dev Neurosci 11:239–247

    Article  Google Scholar 

  • Pirozzoli M, Marino C, Lovisolo G (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24:510–516

    Article  Google Scholar 

  • Polyashuck L (1971) Changes in permeability of histo-hematic barriers under the effect of microwaves. Dokl Akad Nauk Ukr 8:754–758

    Google Scholar 

  • Przedborski SE (2003) Program project on the pathogenesis and treatment of parkinson’s disease. Report of Columbia University New York, NY 10032

    Google Scholar 

  • Rachael UM (2010) Somatic and genetic effects of low SAR 2.45 GHz microwave radiation on Wistar rats. Ph.D. thesis, School of Post Graduate Studies of Covenant University, Ota, pp 1

    Google Scholar 

  • Rao VS, Titushkin IA, Moros EG et al (2008) Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways. Radiat Res 169:319–329

    Article  Google Scholar 

  • Ravera S, Bianco B, Cugnoli C et al (2010) Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31:270–276

    Article  Google Scholar 

  • Regoli F, Gorbi S, Machella N et al (2005) Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radical Biol Med 39:1620–1628

    Article  Google Scholar 

  • Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79:1–48

    Article  Google Scholar 

  • Röösli M, Lörtscher M, Egger M et al (2007) Leukaemia, brain tumours and exposure to extremely low frequency magnetic fields: cohort study of Swiss railway employees. Occup Environ Med 64:553–559

    Article  Google Scholar 

  • Rothman KJ, Chou CK, Morgan R et al (1996) Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology 7:291–298

    Article  Google Scholar 

  • Roxanne N (2009) Cell phones and brain cancer—jury still out (Online). Available: URL http://medscape.com

  • Saito M, Korsmeyer SJ, Schlesinger PH (2000) BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2:553–555

    Article  Google Scholar 

  • Salford LG, Brun AE, Eberhardt JL (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883

    Article  Google Scholar 

  • Salunke BP, Umathe SN, Chavan JG (2013) Low frequency magnetic field induces depression by rising nitric oxide levels in the mouse brain. Int J Res Dev Pharm Life Sci 2:439–450

    Google Scholar 

  • Schapira AH, Cleeter MW, Muddle JR et al (2006) Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons. Ann Neurol 60:253–255

    Article  Google Scholar 

  • Schrader SM, Karnity MH (1994) Occupational hazards to male reproductive in state of the art reviews in occupational medicine: preproductive hazards. In: Gold E, Schenker M, Leskey B (eds). Hanley and Belfus, Philadelphia, PA, pp 405–414

    Google Scholar 

  • Scott D, Hu Q, Roberts SA (1996) Dose-rate sparing for micronucleus induction in lymphocytes of controls and ataxia-telangiectasia heterozygotes exposed to 60Co gamma-irradiation in vitro. Int J Radiat Biol 70:521–527

    Article  Google Scholar 

  • Seeman P (1972) The membrane action of anesthetics and tranquilizers. Pharmacol Rev 24:583

    Google Scholar 

  • Shanes AM (1958) Electrochemical aspects of physiological ad pharmacological action in excitable cells. Pharmacol Rev 10:59

    Google Scholar 

  • Sharma A, Sisodia R, Bhatnagar D, Saxena VK (2014) Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Rad Biol 90:29–35

    Article  Google Scholar 

  • Sharma A, Kesari KK, Saxena VK, Sisodia R (2016) The influence of prenatal 10 GHz microwave radiation exposure on a developing mice brain. Gen Phys Biophys [Epub ahead of print]. Doi:10.4149/gpb_2016026

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    Article  Google Scholar 

  • Simko M, Mattsson MO (2004) Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. J Cell Biochem 93:83–92

    Article  Google Scholar 

  • Sisodia R, Singh S (2009) Biochemical, behavioral and quantitative alterations in cerebellum of Swiss albino mice following irradiation and its modulation by Grewia asiatica. Int J Rad Biol 85:787–795

    Article  Google Scholar 

  • Sonmez OF, Odaci E, Bas O, Kaplan S (2010) Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field. Brain Res 1356:95–101

    Article  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  Google Scholar 

  • Stabel S, Parker PJ (1991) Protein kinase C. Pharmacol Ther 51:71–95

    Article  Google Scholar 

  • Stefanics G, Kellényi L, Molnár F et al (2007) Short GSM mobile phone exposure does not alter human auditory brainstem response. BMC Public Health 7:325

    Google Scholar 

  • Szemerszky R, Zelena D, Barna I, Bárdos G (2010) Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull 81:92–99

    Article  Google Scholar 

  • Takai Y, Kishimoto A, Inoue M et al (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues I: purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem 252:7603–7609

    Google Scholar 

  • TECH (2007) How cell-phone radiation works. Available at: http://www.howstuffworks.com/cell-phone-radiation.htm

  • Thomas P, Harvey S, Gruner T, Fenech M (2007) The buccal cytome and micronucleus frequency is substantially altered in Down’s syndrome and normal ageing compared to young healthy controls. Mutat Res 638:37–47

    Article  Google Scholar 

  • Trippi F, Botto N, Scarpato R, Petrozzi L, Bonucelli U, Latorraca S, Sorbi S, Migliore L (2001) Spontaneous and induced chromosome damage in somatic cells of sporadic and familial Alzheimer’s disease patients. Mutagenesis 16:323–327

    Google Scholar 

  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. Report to the General Assembly, vol II: Effects. United Nations, New York

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  Google Scholar 

  • Vago D, Kesner RP (2005) An electrophysiological and behavioral characterization of the temporoammonic pathway: disruption produces deficits in retrieval and spatial mismatch. In: Society for Neuroscience 35th Annual Meeting; Washington, DC

    Google Scholar 

  • Verschaeve L (2009) Genetic damage in subjects exposed to radiofrequency radiation. Mutat Res 681:259–270

    Article  Google Scholar 

  • Vral A, Thierens H, De Ridder L (1996) Micronucleus induction by 60Co gamma-rays and fast neutrons in ataxia telangiectasia lymphocytes. Int J Radiat Biol 70:171–176

    Article  Google Scholar 

  • Wang X, Liu Y, Lei Y et al (2008) Extremely low-frequency electromagnetic field exposure during chronic morphine treatment strengthens downregulation of dopamine D2 receptors in rat dorsal hippocampus after morphine withdrawal. Neurosci Lett 433:178–182

    Article  Google Scholar 

  • Wolf FI, Torsello A, Tedesco B et al (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120–129

    Article  Google Scholar 

  • Wyde M, Cesta M, Blystone C et al (2016) Report of Partial Findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposures). Draft 5-19-2016. US National Toxicology Program (NTP) doi:http://dx.doi.org/10.1101/055699

  • Zare S, Alivandi S, Ebadi AG (2007) Histological studies of the low frequency electromagnetic fields effect on liver, testes and kidney in guinea pig. World Appl Sci J 2:509–511

    Google Scholar 

  • Zoratti M, Szabo I, De Marchi U (2005) Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 1706:40–52

    Article  Google Scholar 

  • Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M et al (2005) Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—an in vitro study. J Physiol Pharmacol 56:101–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Sisodia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, A., Kesari, K.K., Verma, H.N., Sisodia, R. (2017). Neurophysiological and Behavioral Dysfunctions After Electromagnetic Field Exposure: A Dose Response Relationship. In: Kesari, K. (eds) Perspectives in Environmental Toxicology. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-46248-6_1

Download citation

Publish with us

Policies and ethics