Skip to main content

Encouraging Metacognition in Digital Learning Environments

  • Chapter
  • First Online:
Digital Workplace Learning

Abstract

This chapter provides an overview of the theory of metacognition, empirical evidence regarding how to increase learning, and examples of how it can be incorporated into digital workplace settings. In a digital learning environment, the 13 principles of multimedia learning, coherence, signaling, redundancy, spatial contiguity, temporal contiguity, segmentation, pre-training, modality, multimedia, personalization, voice, embodiment, and images should be utilized to increase coherence. Evidence-based learning techniques such as practice testing, distributed practice, interleaved practice, self-explanation, and elaborative interrogation facilitate the retention and application of new material. In digital learning environments, applying a combination of the 13 principles and evidence-based pedagogical techniques should result in increased metacognition, learning, and engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S., & Burcham, S. (2007). The impact of text coherence on learning by self-explanation. Learning and Instruction, 17, 286–303.

    Article  Google Scholar 

  • Bahrick, H. P. (1979). Maintenance of knowledge: Questions about memory we forgot to ask. Journal of Experimental Psychology: General, 108, 296–308.

    Article  Google Scholar 

  • Berry, D. C. (1983). Metacognitive experience and transfer of logical reasoning. Quarterly Journal of Experimental Psychology, 35A, 39–49.

    Article  Google Scholar 

  • Bjork, E. L., & Bjork, R. A. (2014). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In M. A. Gernsbacher & J. Pomerantz (Eds.), Psychology and the real world: Essays illustrating fundamental contributions to society (2nd edition) (pp. 59–68). New York, NY: Worth.

    Google Scholar 

  • Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(5), 1118–1133.

    Article  Google Scholar 

  • Carlson, R. A., & Shin, J. C. (1996). Practice schedules and subgoal instantiation in cascaded problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 157–168.

    Google Scholar 

  • Carpenter, S. K., & DeLosh, E. L. (2006). Impoverished cue support enhances subsequent retention: Support for the elaborative retrieval explanation of the testing effect. Memory & Cognition, 34(2), 268–276.

    Article  Google Scholar 

  • Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–380.

    Article  Google Scholar 

  • Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095–1102.

    Article  Google Scholar 

  • Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional Psychology (pp. 161–238). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chi, M. T. H., de Leeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.

    Google Scholar 

  • de Bruin, A. B. H., Rikers, R. M. J. P., & Schmidt, H. G. (2007). The effect of self-explanation and prediction on the development of principled understanding of chess in novices. Contemporary Educational Psychology, 32, 188–205.

    Article  Google Scholar 

  • Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practice effect: Now you see it, now you don’t. Journal of Applied Psychology, 84, 795–805.

    Article  Google Scholar 

  • Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58.

    Article  Google Scholar 

  • Dunning, D., Johnson, K., Ehrlinger, J., & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12(3), 83–87.

    Article  Google Scholar 

  • Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. East Norwalk, CT: Appleton-Century-Crofts.

    Book  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906.

    Article  Google Scholar 

  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26(1), 9–25.

    Article  Google Scholar 

  • Glover, J. A. (1989). The “testing” phenomenon: Not gone but nearly forgotten. Journal of Educational Psychology, 81(3), 392–399.

    Article  Google Scholar 

  • Glover, J. A., & Corkill, A. J. (1987). Influence of paraphrased repetitions on the spacing effect. Journal of Educational Psychology, 79, 198–199.

    Article  Google Scholar 

  • Griffin, T. D., Wiley, J., & Thiede, K. W. (2008). Individual differences, rereading, and self-explanation: Concurrent processing and cue validity as constraints on metacomprehension accuracy. Memory & Cognition, 36, 93–103.

    Article  Google Scholar 

  • Gurung, R. A. R. (2005). How do students really study (and does it matter)? Teaching of Psychology, 32, 367–372.

    Google Scholar 

  • Gurung, R. A., Weidert, J., & Jeske, A. (2010). Focusing on how students study. Journal of the Scholarship of Teaching and Learning, 10(1), 28–35.

    Google Scholar 

  • Hacker, D. J., Bol, L., Horgan, D. D., & Rakow, E. A. (2000). Test prediction and performance in a classroom context. Journal of Educational Psychology, 92(1), 160.

    Article  Google Scholar 

  • Hausmann, R. G., & Chi, M. H. (2002). Can a computer interface support self-explaining. Cognitive. Technology, 7(1), 4–14.

    Google Scholar 

  • Janiszewski, C., Noel, H., & Sawyer, A. G. (2003). A meta-analysis of the spacing effect in verbal learning: Implications for research on advertising repetition and consumer memory. Journal of Consumer Research, 30, 138–149.

    Article  Google Scholar 

  • Kramarski, B., & Dudai, V. (2009). Group-metacognitive support for online inquiry in mathematics with differential self-questioning. Journal of Educational Computing Research, 40(4), 377–404.

    Article  Google Scholar 

  • Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121.

    Article  Google Scholar 

  • Mayer, R. E. (2005a). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2005b). Principles for managing essential processing in multimedia learning: Segmenting, pre-training, and modality principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 169–182). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2005c). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 183–200). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2005d). Principles of multimedia learning based on social cues: Personalization, voice, and image principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 202–212). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (2011). Instruction based on visualizations. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 427–445). New York, NY: Routledge.

    Google Scholar 

  • Mayer, R. E. (2014). Research-based principles for designing multimedia instruction. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.), Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

    Google Scholar 

  • McDermott, K. B., Agarwal, P. K., D’Antonio, L., Roediger, H. L., & McDaniel, M. A. (2014). Both multiple-choice and short-answer quizzes enhance later exam performance in middle and high school classes. Journal of Experimental Psychology: Applied, 20(1), 3–21.

    Google Scholar 

  • Nevin, J. A., Grace, R. C., Holland, S., & McLean, A. P. (2001). Variable-ratio versus variable-interval schedules: Response rate, resistance to change, and preference. Journal of the Experimental Analysis of Behavior, 76(1), 43–74.

    Article  Google Scholar 

  • Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 19, pp. 123–205). New York, NY: Academic Press.

    Google Scholar 

  • Pressley, M., McDaniel, M. A., Turnure, J. E., Wood, E., & Ahmad, M. (1987). Generation and precision of elaboration: Effects on intentional and incidental learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 291–300.

    Google Scholar 

  • Rawson, K. A., & Kintsch, W. (2005). Rereading effects depend upon the time of test. Journal of Educational Psychology, 97, 70–80.

    Article  Google Scholar 

  • Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23(1), 90–108.

    Article  Google Scholar 

  • Roediger, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15(1), 20–27.

    Article  Google Scholar 

  • Roediger, H. L., Putnam, A. L., & Smith, M. A. (2011). Ten benefits of testing and their applications to educational practice. In J. Mestre & B. Ross (Eds.), The psychology of learning and motivation: Cognition in education (Vol. 55, pp. 1–36). San Diego, CA: Elsevier Academic Press.

    Google Scholar 

  • Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35, 481–498.

    Article  Google Scholar 

  • Willingham, D. T. (2009). Why don't students like school?: A cognitive scientist answers questions about how the mind works and what it means for the classroom. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Woloshyn, V. E., & Stockley, D. B. (1995). Helping students acquire belief-inconsistent and belief-consistent science facts: Comparisons between individual and dyad study using elaborative interrogation, self-selected study and repetitious-reading. Applied Cognitive Psychology, 9, 75–89.

    Article  Google Scholar 

  • Wood, E., Pressley, M., & Winne, P. H. (1990). Elaborative interrogation effects on children’s learning of factual content. Journal of Educational Psychology, 82(4), 741–748.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Devers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devers, C.J., Devers, E.E., Oke, L.D. (2018). Encouraging Metacognition in Digital Learning Environments. In: Ifenthaler, D. (eds) Digital Workplace Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-46215-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46215-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46214-1

  • Online ISBN: 978-3-319-46215-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics