Skip to main content

Classical Moduli Spaces and Rationality

  • Chapter
  • First Online:
Rationality Problems in Algebraic Geometry

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2172))

  • 1283 Accesses

Abstract

Moduli spaces and rational parametrizations of algebraic varieties have common roots. A rich album of moduli of special varieties was indeed collected by classical algebraic geometers and their (uni)rationality was studied. These were the origins for the study of a wider series of moduli spaces one could define as classical. These moduli spaces are parametrize several type of varieties which are often interacting: curves, abelian varieties, K3 surfaces. The course will focus on rational parametrizations of classical moduli spaces, building on concrete constructions and examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A first counterexample to this outstanding problem has been finally produced by B. Hassett, A. Pirutka and Y. Tschinkel in 2016. See: Stable rationality of quadric surfaces bundles over surfaces, arXiv1603.09262

  2. 2.

    We recall that \(kod(X):= \mbox{ min}\{\dim f_{m}(X^{{\prime}}),\ m \geq 1\}\). Here X is a complete, smooth birational model of X. Moreover f m is the map defined by the linear system of pluricanonical divisors \(P_{m}:= \mathbf{P}H^{0}(det(\Omega _{X^{{\prime}}}^{1})^{\otimes m})\). If P m is empty for each m ≥ 1 one puts kod(X): = −.

  3. 3.

    Unless differently stated, we assume g ≥ 2 to simplify the exposition.

  4. 4.

    To simplify the notation we identify Pic(P 1) to \(\mathbb{Z}\) via the degree map.

References

  1. E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. II. Grundlehren der Mathematischen Wissenschaften, vol. 268 (Springer, New York, 1985)

    Google Scholar 

  2. E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267 (Springer, New York, 1985)

    Google Scholar 

  3. A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactification of Locally Symmetric Varieties, 2nd edn. With the Collaboration of Peter Scholze (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  4. E. Arbarello, Alcune osservazioni sui moduli delle curve appartenenti a una data superficie algebrica. Lincei Rend. Sc. fis. mat. e nat. 59, 725–732 (1975)

    MathSciNet  MATH  Google Scholar 

  5. E. Arbarello, E. Sernesi, The equation of a plane curve. Duke Math. J. 46, 469–485 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Barth, A. Verra, Torsion on K3 sections, in Problems in the Theory of Surfaces and their Classification (Academic, London, 1991), pp. 1–24

    MATH  Google Scholar 

  7. S. Boucksom, J.P. Demailly, M. Paun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebr. Geom. 22, 201–248 (2013)

    Article  MATH  Google Scholar 

  8. A. Beauville, Determinantal hypersurfaces. Mich. Math. J. 48, 39–64 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Beauville, Variétés de Prym et jacobiennes intermédiares. Ann. Ècole Norm. Sup. 10, 149–196 (1977)

    MATH  Google Scholar 

  10. A. Beauville, Prym varieties and the Schottky problem. Invent. Math. 41, 209–217 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Bini, C. Fontanari, F. Viviani, On the birational geometry of the universal Picard variety. IRMN 4, 740–780 (2012)

    MathSciNet  MATH  Google Scholar 

  12. C. Bohning, The rationality of the moduli space of curves of genus 3 after P. Katsylo, in Cohomological and Geometric Approaches to Rationality Problems. Progress in Mathematics, vol. 282 (Birkhauser, Boston, 2010), pp. 17–53

    Google Scholar 

  13. A. Bruno, A. Verra, M 15 is rationally connected, in Projective Varieties With Unexpected Properties, vol. 51–65 (W. de Gruyter, New York, 2005)

    Google Scholar 

  14. G. Castelnuovo, Ricerche generali sopra i sistemi lineari di curve piane. Mem. R. Accad. delle Scienze di Torino 42, 3–42 (1892)

    Google Scholar 

  15. F. Catanese, On certain moduli spaces related to curves of genus 4, in Algebraic Geometry. Lecture Notes in Mathematics, vol. 1008 (Springer, New York, 1983), pp. 30–50

    Google Scholar 

  16. C. Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring’s problem, in European Congress of Mathematics, Barcelona 2000 volume I.

    Google Scholar 

  17. H. Clemens, Double solids. Adv. Math. 47, 107–230 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.C. Chang, Z. Ran, Unirationality of the moduli space of curves of genus 11, 13 (and 12). Invent. Math. 76, 41–54 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.C. Chang, Z. Ran, On the slope and Kodaira dimension of M g for small g. J. Differ. Geom. 34, 267–274 (1991)

    Google Scholar 

  20. I. Dolgachev, Rationality of \(\mathcal{R}_{2}\) and \(\mathcal{R}_{3}\). Pure Appl. Math. Q. 4, 501–508 (2008)

    Article  MathSciNet  Google Scholar 

  21. R. Donagi, The unirationality of \(\mathcal{A}_{5}\). Ann. Math. 119, 269–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Donagi, The fibers of the Prym map, in Contemporary Mathematics, vol. 136 (AMS Providence, Providence, RI, 1992)

    Google Scholar 

  23. R. Donagi, R. Smith, The structure of the Prym map. Acta Math. 145, 26–102 (1981)

    MathSciNet  MATH  Google Scholar 

  24. V.A. Iskovskikh, Yu. Prokhorov, Algebraic Geometry V - Fano Varieties. Encyclopaedia of Mathematical Sciences, vol. 47 (Springer, Berlin, 1999), pp. 1–247

    Google Scholar 

  25. G. Farkas, Aspects of the birational geometry of M g , in Geometry of Riemann Surfaces and Their Moduli Spaces, Surveys in Differential Geometry, vol. 14 (International Press, Somerville, MA, 2010), pp. 57–110

    Google Scholar 

  26. G. Farkas, S. Grushevsky, R. Salvati Manni, A. Verra, Singularities of theta divisors and the geometry of \(\overline{\mathcal{A}}_{5}\). J. Eur. Math. Soc. 16, 1817–1848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Farkas, M. Kemeny, The generic Green-Lazarsfeld conjecture. Invent. Math. 203, 265–301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Farkas, K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. 12, 755–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Farkas, M. Popa, Effective divisors on \(\mathcal{M}_{g}\), curves on K3 surfaces and the slope conjecture. J. Algebr. Geom. 14, 241–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Farkas, A. Verra, The classification of universal Jacobians over the moduli space of curves. Comment. Math. Helv. 88, 587–611(2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Farkas, A. Verra, Moduli of theta characteristics via Nikulin surfaces. Math. Ann. 354, 465–496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Farkas, A. Verra, The universal abelian variety over A 5. Ann. Sci. Ecole Norm. Sup. 49, 521–542 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Farkas, A. Verra, Moduli of curves of low genus and elliptic surfaces. Preprint (2012)

    Google Scholar 

  34. G. Farkas, A. Verra, Prym varieties and moduli of polarized Nikulin surfaces. Adv. Math. 290, 314–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Garbagnati, A. Sarti, Projective models of K3 surfaces with an even set. J. Algebra 318, 325–350 (2007)

    Article  MATH  Google Scholar 

  36. S. Grushevsky, R. Salvati Manni, The Prym map on divisors and the slope of \(\mathcal{A}_{5}\), Appendix by K. Hulek. IMRN 24, 6645–6660 (2013)

    MATH  Google Scholar 

  37. S. Grushevsky, D. Zakharov, The double ramification cycle and the theta divisor. Proc. Am. Math. Soc. 142, 4053–4064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Harris, On the Kodaira dimension of the moduli space of curves II: the even genus case. Invent. Math. 75, 437–466 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Harris, On the Severi problem. Invent. Math. 84, 445–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67, 23–88 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Harris, I. Morrison, Slopes of effective divisors on the moduli space of curves. Invent. Math. 99, 321–355 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Harris, I. Morrison, Moduli of Curves. GTM (Springer, New York, 1991)

    MATH  Google Scholar 

  43. D. Huybrechts, Lectures on K3 surfaces. Cambridge UP (2015, to appear). Preprint at http://www.math.uni-bonn.de/people/huybrech/K3.html

  44. J. Igusa, Arithmetic variety of moduli for genus two. Ann. Math. 72, 612–649 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Izadi, A. Lo Giudice, G. Sankaran, The moduli space of étale double covers of genus 5 curves is unirational. Pac. J. Math. 239, 39–52 (2009)

    Article  MATH  Google Scholar 

  46. J. Kollar, Which are the simplest algebraic varieties? Bull. Am. Math. Soc. 38, 409–433 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Katsylo, Rationality of the moduli variety of curves of genus 3. Comment. Math. Helv. 71, 507–524 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Katsylo, On the unramified 2-covers of the curves of genus 3, in Algebraic Geometry and its Applications. Aspects of Mathematics, vol. 25 (Vieweg, Berlin, 1994), pp. 61–65

    Google Scholar 

  49. P. Katsylo, Rationality of the variety of moduli of curves of genus 5. Mat. Sb. 182, 457–464 (1991). Translation in Math. USSR-Sb. 72 439–445 (1992)

    Google Scholar 

  50. P. Katsylo, The variety of moduli of curves of genus four is rational. Dokl. Akad. Nauk SSSR 290, 1292–1294 (1986)

    MathSciNet  Google Scholar 

  51. P. Katsylo, Rationality of the moduli spaces of hyperelliptic curves. Izv. Akad. Nauk SSSR 48, 705–710 (1984)

    MathSciNet  Google Scholar 

  52. D. Mumford, On the Kodaira dimension of the Siegel modular variety, in Algebraic Geometry-Open problems (Ravello 1982). Lecture Notes in Mathematics, vol. 997 (Springer, Berlin, 1983), pp. 348–375.

    Google Scholar 

  53. D. Mumford, Prym Varieties I, in Contributions to Analysis (Academic, New York, 1974), pp. 325–350

    Book  Google Scholar 

  54. S. Mori, S. Mukai, The uniruledness of the moduli space of curves of genus 11, in Algebraic Geometry (Tokyo/Kyoto 1082). Lecture Notes in Mathematics, vol. 1016 (Springer, Berlin, 1983), pp. 334–353

    Google Scholar 

  55. S. Mukai, Curves, K3 surfaces and Fano manifolds of genus ≤ 10, in Algebraic Geometry and Commutative Algebra I (Kinokunya, Tokyo, 1988), pp. 367–377

    Google Scholar 

  56. S. Mukai, Curves and K3 surfaces of genus eleven, in Moduli of Vector Bundles. Lecture Notes in Pure and Applied Mathematics, vol. 179 (Dekker, New York, 1996), pp. 189–197

    Google Scholar 

  57. S. Mukai, Non-abelian Brill-Noether theory and Fano 3-folds. Sugaku Expositions 14, 125–153 (2001)

    MathSciNet  Google Scholar 

  58. S. Mukai, Curves and Grassmannians, in Algebraic Geometry and Related Topics (International Press, Boston, 1992), pp. 19–40

    Google Scholar 

  59. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces. Trans. Mosc. Math. Soc. 38, 71–135 (1980)

    MATH  Google Scholar 

  60. S. Recillas, Jacobians of curves with a g 4 1 are Prym varieties of trigonal curves. Bol. Soc. Matemat. Mexic. 19, 9–13 (1974)

    MathSciNet  MATH  Google Scholar 

  61. F. Severi, Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann. Atti R. Acc. dei Lincei, Serie V 24, 877–888 (1915)

    Google Scholar 

  62. F. Severi, Vorlesungen über Algebraische Geometrie (Teubner, Leipzig, 1921)

    Book  MATH  Google Scholar 

  63. N. Shepherd-Barron, Invariant theory for S 5 and the rationality of \(\mathcal{M}_{6}\). Compos. Math. 70, 13–25 (1989)

    MathSciNet  MATH  Google Scholar 

  64. N. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties. Invent. Math. 163, 25–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. F.O. Schreyer, Computer aided unirationality proofs of moduli spaces, in Handbook of Moduli, III (International Press, Boston, 2011), pp. 257–280

    MATH  Google Scholar 

  66. B. Segre, Sui moduli delle curve algebriche. Ann. Mat. 4, 71–102 (1930)

    MATH  Google Scholar 

  67. B. Segre, Alcune questioni su insiemi finiti di punti in geometria algebrica. Rend. Sem. Mat. Univ. Torino 20, 67–85 (1960/1961)

    Google Scholar 

  68. E. Sernesi, L’unirazionalità della varietà dei moduli delle curve di genere 12. Ann. Scuola Normale Sup. Pisa 8, 405–439 (1981)

    MATH  Google Scholar 

  69. E. Sernesi, Deformation of Algebraic Schemes. Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer, Berlin, 2006)

    Google Scholar 

  70. J.G. Semple, L. Roth, Introduction to Algebraic Geometry (Oxford University Press, Oxford, 1985), p. 400

    MATH  Google Scholar 

  71. B. van Geemen, A. Sarti, Nikulin involutions on K3 surfaces. Math. Z. 255, 731–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Y. Tai, On the Kodaira dimension of the moduli space of abelian varieties. Invent. Math. 68, 425–439 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  73. C. Voisin, Sur l’ application de Wahl des courbes satisfaisantes la condition de Brill-Noether-Petri. Acta Math. 168, 249–272 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Verra, Rational parametrizations of moduli spaces of curves, in Handbook of Moduli, III (International Press, Boston, 2011), pp. 431–506

    MATH  Google Scholar 

  75. A. Verra, The unirationality of the moduli space of curves of genus 14 or lower. Compos. Math. 141, 1425–1444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Verra, The fibre of the Prym map in genus three. Math. Ann. 276, 433–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Verra, A short proof of the unirationality of \(\mathcal{A}_{5}\). Indag. Math. 46, 339–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Verra, On the universal principally polarized abelian variety of dimension 4, in Curves and Abelian Varieties. Contemporary Mathematics, vol. 465 (American Mathematical Society, Providence, RI, 2008), pp. 253–274

    Google Scholar 

  79. A. Verra, Geometry of genus 8 Nikulin surfaces and rationality of their Moduli, in K3 Surfaces and Their Moduli. Progress in Mathematics, vol. 316 (Birkhauser, 2016), pp. 345–364

    Google Scholar 

  80. G. Welters, A theorem of Gieseker-Petri type for Prym varieties. Ann. Sci. Ec. Norm. Super. 18, 671–683 (1985). Gerald E. Welters. A theorem of Gieseker-Petri type for Prym varieties. Ann. Sci. Ecole Norm.

    Google Scholar 

Download references

Acknowledgements

I wish to thank CIME and the scientific coordinators of the School ‘Rationality problems’ for the excellent and pleasant realization of this event. Let me also thank the referee for a patient reading and several useful suggestions. Supported by MIUR PRIN-2010 project ‘Geometria delle varietá algebriche e dei loro spazi di moduli’ and by INdAM-GNSAGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Verra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verra, A. (2016). Classical Moduli Spaces and Rationality. In: Pardini, R., Pirola, G. (eds) Rationality Problems in Algebraic Geometry. Lecture Notes in Mathematics(), vol 2172. Springer, Cham. https://doi.org/10.1007/978-3-319-46209-7_4

Download citation

Publish with us

Policies and ethics