Skip to main content

Hymenoptera Venoms: Toxicity, Components, Stability, and Standardization

  • Chapter
  • First Online:
Stinging Insect Allergy

Abstract

Bees, wasps, and ants possess predatory and/or defensive venoms that contain many toxic compounds. Diverse life cycles of this enormous group of insects implicate a large variability in venom compositions. Several venom compounds have been reported to cause an allergic reaction in humans, suggesting that a good knowledge of the composition of venoms and the structure of allergens is a prerequisite for the accurate diagnosis and treatment of insect venom allergy. A large group of proteins and peptides that is even more complex due to protein heterogeneity and posttranslational modifications represents a huge source of structurally diverse and biologically active toxins with high potency and selectivity for a wide range of targets. Due to the presence of similar protein allergens in multiple Hymenoptera venoms, cross-reactivity occurs between venoms from different species. Concerning the treatment of allergy caused by stinging insects, obtaining highly standardized allergens is crucial in allergy diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong ES, Belov K. Venom evolution through gene duplications. Gene. 2012;496(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt JO. Venoms and toxins in insects. In: Caperina JL, editor. Encyclopedia of entomology. Dordrecht, Netherlands: Springer; 2008. p. 4076–89.

    Google Scholar 

  3. Moreau SJ. “It stings a bit but it cleans well”: venoms of Hymenoptera and their antimicrobial potential. J Insect Physiol. 2013;59(2):186–204.

    Article  CAS  PubMed  Google Scholar 

  4. Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Liljeblad J, Dowling AP, et al. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics. 2012;28(1):80–112.

    Article  Google Scholar 

  5. de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, et al. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol. 2010;19(Suppl 1):11–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. King TP, Spangfort MD. Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol. 2000;123(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  7. de Graaf DC, Aerts M, Danneels E, Devreese B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteome. 2009;72(2):145–54.

    Article  CAS  Google Scholar 

  8. Starr CK. Enabling mechanisms in the origin of sociality in the Hymenoptera—the stings the thing. Ann Entomol Soc Am. 1985;78(6):836–40.

    Article  Google Scholar 

  9. Kerr WE, De Lello E. Sting glands in stingless bees—a vestigial character (Hymenoptera: Apidae). J N Y Ent Soc. 1962;70(4):190–214.

    Google Scholar 

  10. Bridges AR, Owen MD. The morphology of the honey bee (Apis mellifera L) venom gland and reservoir. J Morphol. 1984;181(1):69–86.

    Article  Google Scholar 

  11. Billen J. Morphology and ultrastructure of the Dufour gland in workers of social wasps (Hymenoptera, Vespidae). Arthropod Struct Dev. 2006;35(2):77–84.

    Article  PubMed  Google Scholar 

  12. Choi MY, Vander Meer RK. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One. 2012;7(11):e50400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hider RC. Honeybee venom—a rich source of pharmacologically active peptides. Endeavour. 1988;12(2):60–5.

    Article  CAS  PubMed  Google Scholar 

  14. Schumacher MJ, Tveten MS, Egen NB. Rate and quantity of delivery of venom from honeybee stings. J Allergy Clin Immunol. 1994;93(5):831–5.

    Article  CAS  PubMed  Google Scholar 

  15. Harano K, Obara Y. The role of chemical and acoustical stimuli in selective queen cell destruction by virgin queens of the honeybee Apis mellifera (Hymenoptera:Apidae). Appl Entomol Zool. 2004;39(4):611–6.

    Article  Google Scholar 

  16. Roat TC, Nocelli RCF, Landim CD. The venom gland of queens of Apis mellifera (Hymenoptera, Apidae): morphology and secretory cycle. Micron. 2006;37(8):717–23.

    Article  PubMed  Google Scholar 

  17. Schmidt JO. Toxinology of venoms from the honeybee genus Apis. Toxicon. 1995;33(7):917–27.

    Article  CAS  PubMed  Google Scholar 

  18. Danneels EL, Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel). 2015;7(11):4468–83.

    Article  CAS  Google Scholar 

  19. Nocelli RCF, Roat TC, Cruz-Landim C. Alterations induced by the juvenile hormone in glandular cells of the Apis mellifera venom gland: applications on newly emerged workers (Hymenoptera, Apidae). Micron. 2007;38(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira Junior RS, Sciani JM, Marques-Porto R, Junior AL, Orsi RO, Barraviera B, et al. Africanized honey bee (Apis mellifera) venom profiling: seasonal variation of melittin and phospholipase A(2) levels. Toxicon. 2010;56(3):355–62.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffman DR, Jacobson RS. Allergens in hymenoptera venom XII: how much protein is in a sting? Ann Allergy. 1984;52(4):276–8.

    CAS  PubMed  Google Scholar 

  22. Steen CJ, Janniger CK, Schutzer SE, Schwartz RA. Insect sting reactions to bees, wasps, and ants. Int J Dermatol. 2005;44(2):91–4.

    Article  PubMed  Google Scholar 

  23. Van Vaerenbergh M, Debyser G, Smagghe G, Devreese B, de Graaf DC. Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS. Toxicon. 2015;102:81–8.

    Article  PubMed  CAS  Google Scholar 

  24. Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JN. Diagnosis of Hymenoptera venom allergy. Allergy. 2005;60(11):1339–49.

    Article  CAS  PubMed  Google Scholar 

  25. Bruschini C, Dani FR, Pieraccini G, Guarna F, Turillazzi S. Volatiles from the venom of five species of paper wasps (Polistes dominulus, P. gallicus, P. nimphus, P. sulcifer and P. olivaceus). Toxicon. 2006;47(7):812–25.

    Article  CAS  PubMed  Google Scholar 

  26. Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, et al. Diversity of peptide toxins from stinging ant venoms. Toxicon. 2014;92:166–78.

    Article  CAS  PubMed  Google Scholar 

  27. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzman-Novoa E, DeGrandi-Hoffman G, et al. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc Natl Acad Sci U S A. 2009;106(36):15400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prado M, Solano-Trejos G, Lomonte B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon. 2010;56(6):1007–17.

    Article  CAS  PubMed  Google Scholar 

  29. Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European and Africanized honey bee venoms. AmJTrop Med Hyg. 1990;43(1):79–86.

    Article  CAS  Google Scholar 

  30. Vetter RS, Visscher PK, Camazine S. Mass envenomations by honey bees and wasps. West J Med. 1999;170(4):223–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Betten DP, Richardson WH, Tong TC, Clark RF. Massive honey bee envenomation-induced rhabdomyolysis in an adolescent. Pediatrics. 2006;117(1):231–5.

    Article  PubMed  Google Scholar 

  32. Jones RG, Corteling RL, Bhogal G, Landon J. A novel Fab-based antivenom for the treatment of mass bee attacks. AmJTrop Med Hyg. 1999;61(3):361–6.

    Article  CAS  Google Scholar 

  33. Funayama JC, Pucca MB, Roncolato EC, Bertolini TB, Campos LB, Barbosa JE. Production of human antibody fragments binding to melittin and phospholipase A2 in Africanised bee venom: minimising venom toxicity. Basic Clin Pharmacol Toxicol. 2012;110(3):290–7.

    Article  CAS  PubMed  Google Scholar 

  34. Piek T, Spanjer W. Chemistry and pharmacology of solitary wasp venoms. In: Piek T, editor. Venoms of the Hymenoptera: biochemical, pharmacological and behavioral aspects. London: Academic; 1986. p. 161–307.

    Chapter  Google Scholar 

  35. Xie CH, Xu SB, Ding FF, Xie MJ, Lv JG, Yao JH, et al. Clinical features of severe wasp sting patients with dominantly toxic reaction: analysis of 1091 cases. PLoS One. 2013;8(12):e83164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tracy JM. Insect allergy. Mt Sinai J Med. 2011;78(5):773–83.

    Article  PubMed  Google Scholar 

  37. Nadolski J. Effects of the European hornet (Vespa crabro Linnaeus 1761) crude venom on its own species. J Venom Anim Toxins Incl Trop Dis. 2013;19(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. deShazo RD, Butcher BT, Banks WA. Reactions to the stings of the imported fire ant. N Engl J Med. 1990;323(7):462–6.

    Article  CAS  PubMed  Google Scholar 

  39. Caro MR, Derbes VJ, Jung R. Skin responses to the sting of the imported fire ant (Solenopsis saevissima). AMA Arch Derm. 1957;75(4):475–88.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt JO, Blum MS. Pharmacological and toxicological properties of harvester ant, Pogonomyrmex badius, venom. Toxicon. 1978;16(6):645–51.

    Article  CAS  PubMed  Google Scholar 

  41. Wanandy T, Gueven N, Davies NW, Brown SG, Wiese MD. Pilosulins: a review of the structure and mode of action of venom peptides from an Australian ant Myrmecia pilosula. Toxicon. 2015;98:54–61.

    Article  CAS  PubMed  Google Scholar 

  42. dos Santos LD, da Silva Menegasso AR, dos Santos Pinto JR, Santos KS, Castro FM, Kalil JE, et al. Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp Polybia paulista. Proteomics. 2011;11(8):1403–12.

    Article  PubMed  CAS  Google Scholar 

  43. Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000;1488(1–2):1–19.

    CAS  PubMed  Google Scholar 

  44. Kohler J, Blank S, Muller S, Bantleon F, Frick M, Huss-Marp J, et al. Component resolution reveals additional major allergens in patients with honeybee venom allergy. J Allergy Clin Immunol. 2014;133(5):1383–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman DR, El-Choufani SE, Smith MM, de Groot H. Occupational allergy to bumblebees: allergens of Bombus terrestris. J Allergy Clin Immunol. 2001;108(5):855–60.

    Article  CAS  PubMed  Google Scholar 

  46. Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteome. 2014;99:169–78.

    Article  CAS  Google Scholar 

  47. King TP, Jim SY, Wittkowski KM. Inflammatory role of two venom components of yellow jackets (Vespula vulgaris): a mast cell degranulating peptide mastoparan and phospholipase A1. Int Arch Allergy Immunol. 2003;131(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  48. dos Santos Pinto JR, Fox EG, Saidemberg DM, Santos LD, da Silva Menegasso AR, Costa-Manso E, et al. Proteomic view of the venom from the fire ant Solenopsis invicta Buren. J Proteome Res. 2012;11(9):4643–53.

    Article  CAS  PubMed  Google Scholar 

  49. Dias NB, de Souza BM, Gomes PC, Brigatte P, Palma MS. Peptidome profiling of venom from the social wasp Polybia paulista. Toxicon. 2015;107(Pt B):290–303.

    Article  CAS  PubMed  Google Scholar 

  50. dos Santos LD, Santos KS, Pinto JR, Dias NB, de Souza BM, dos Santos MF, et al. Profiling the proteome of the venom from the social wasp Polybia paulista: a clue to understand the envenoming mechanism. J Proteome Res. 2010;9(8):3867–77.

    Article  PubMed  CAS  Google Scholar 

  51. Abe T, Sugita M, Fujikura T, Hiyoshi J, Akasu M. Giant hornet (Vespa mandarinia) venomous phospholipases. The purification, characterization and inhibitory properties by biscoclaurine alkaloids. Toxicon. 2000;38(12):1803–16.

    Article  CAS  PubMed  Google Scholar 

  52. Matuszek MA, Hodgson WC, King RG, Sutherland SK. Some enzymic activities of two Australian ant venoms: a jumper ant Myrmecia pilosula and a bulldog ant Myrmecia pyriformis. Toxicon. 1994;32(12):1543–9.

    Article  CAS  PubMed  Google Scholar 

  53. Takasaki C, Fukumoto M. Phospholipases B from Japanese yellow hornet (Vespa xanthoptera) venom. Toxicon. 1989;27(4):449–58.

    Article  CAS  PubMed  Google Scholar 

  54. Kreil G. Hyaluronidases—a group of neglected enzymes. Protein Sci. 1995;4(9):1666–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Justo Jacomini DL, Gomes Moreira SM, Campos Pereira FD, Zollner RL, Brochetto Braga MR. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom. Toxicon. 2014;82:104–11.

    Article  PubMed  CAS  Google Scholar 

  56. An S, Chen L, Wei JF, Yang X, Ma D, Xu X, et al. Purification and characterization of two new allergens from the venom of Vespa magnifica. PLoS One. 2012;7(2):e31920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seppala U, Selby D, Monsalve R, King TP, Ebner C, Roepstorff P, et al. Structural and immunological characterization of the N-glycans from the major yellow jacket allergen Ves v 2: the N-glycan structures are needed for the human antibody recognition. Mol Immunol. 2009;46(10):2014–21.

    Article  PubMed  CAS  Google Scholar 

  58. Jin C, Focke M, Leonard R, Jarisch R, Altmann F, Hemmer W. Reassessing the role of hyaluronidase in yellow jacket venom allergy. J Allergy Clin Immunol. 2010;125(1):184–90.

    Article  CAS  PubMed  Google Scholar 

  59. Lu G, Kochoumian L, King TP. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins. J Biol Chem. 1995;270(9):4457–65.

    Article  CAS  PubMed  Google Scholar 

  60. Skov LK, Seppala U, Coen JJ, Crickmore N, King TP, Monsalve R, et al. Structure of recombinant Ves v 2 at 2.0 Angstrom resolution: structural analysis of an allergenic hyaluronidase from wasp venom. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 6):595–604.

    Article  PubMed  CAS  Google Scholar 

  61. Muller UR. Hymenoptera venom proteins and peptides for diagnosis and treatment of venom allergic patients. Inflamm Allergy Drug Targets. 2011;10(5):420–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sobotka AK, Franklin RM, Adkinson Jr NF, Valentine M, Baer H, Lichtenstein LM. Allergy to insect stings. II. Phospholipase A: the major allergen in honeybee venom. J Allergy Clin Immunol. 1976;57(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt JO, Blum MS, Overal WL. Comparative enzymology of venoms from stinging Hymenoptera. Toxicon. 1986;24(9):907–21.

    Article  CAS  PubMed  Google Scholar 

  64. Serrano SMT, Maroun RC. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon. 2005;45(8):1115–32.

    Article  CAS  PubMed  Google Scholar 

  65. Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory—on behalf of the scientific and standardization committee’s registry of exogenous hemostatic factors. Thromb Haemost. 1998;79(3):675–83.

    CAS  PubMed  Google Scholar 

  66. Han JY, You DW, Xu XQ, Han W, Lu Y, Lai R, et al. An anticoagulant serine protease from the wasp venom of Vespa magnifica. Toxicon. 2008;51(5):914–22.

    Article  CAS  PubMed  Google Scholar 

  67. Fitch CD, Hoffman DR, Schmidt M. Cloning of a paper wasp venom serine protease allergen. J Allergy Clin Immunol. 2001;107(2):S221.

    Google Scholar 

  68. Georgieva D, Greunke K, Betzel C. Three-dimensional model of the honeybee venom allergen Api m 7: structural and functional insights. Mol BioSyst. 2010;6(6):1056–60.

    Article  CAS  PubMed  Google Scholar 

  69. Bork P, Beckmann G. The cub domain—a widespread module in developmentally-regulated proteins. J Mol Biol. 1993;231(2):539–45.

    Article  CAS  PubMed  Google Scholar 

  70. Choo YM, Lee KS, Yoon HJ, Kim BY, Sohn MR, Roh JY, et al. Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One. 2010;5(5):e10393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Swenson S, Markland FS. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 2005;45(8):1021–39.

    Article  CAS  PubMed  Google Scholar 

  72. Kim JS, Choi JY, Lee JH, Bin Park J, Fu Z, Liu Q, et al. Bumblebee venom serine protease increases fungal insecticidal virulence by inducing insect melanization. PLoS One. 2013;8(4):e62555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kreil G, Mollay C, Kaschnitz R, Haiml L, Vilas U. Prepromelittin: specific cleavage of the pre- and the propeptide in vitro. Ann N Y Acad Sci. 1980;343:338–46.

    Article  CAS  PubMed  Google Scholar 

  74. Michel Y, McIntyre M, Ginglinger H, Ollert M, Cifuentes L, Blank S, et al. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation. J Investig Allergol Clin Immunol. 2012;22(7):476–84.

    CAS  PubMed  Google Scholar 

  75. Kim BY, Lee KS, Zou FM, Wan H, Choi YS, Yoon HJ, et al. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Toxicon. 2013;76:110–7.

    Article  CAS  PubMed  Google Scholar 

  76. Qiu Y, Lee KS, Choo YM, Kong DX, Yoon HJ, Jin BR. Molecular cloning and antifibrinolytic activity of a serine protease inhibitor from bumblebee (Bombus terrestris) venom. Toxicon. 2013;63:1–6.

    Article  CAS  PubMed  Google Scholar 

  77. Wan H, Kim BY, Lee KS, Yoon HJ, Lee KY, Jin BR. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor. Comp Biochem Physiol B Biochem Mol Biol. 2014;167:59–64.

    Article  CAS  PubMed  Google Scholar 

  78. Yang XB, Wang YK, Lu ZK, Zhai L, Jiang JG, Liu JZ, et al. A novel serine protease inhibitor from the venom of Vespa bicolor Fabricius. Comp Biochem Physiol B Biochem Mol Biol. 2009;153(1):116–20.

    Article  PubMed  CAS  Google Scholar 

  79. Chao SC, Lee YY. Acute rhabdomyolysis and intravascular hemolysis following extensive wasp stings. Int J Dermatol. 1999;38(2):135–7.

    Article  CAS  PubMed  Google Scholar 

  80. Yan SG, Cui F, Qiao CL. Structure, function and applications of carboxylesterases from insects for insecticide resistance. Protein Pept Lett. 2009;16(10):1181–8.

    Article  CAS  PubMed  Google Scholar 

  81. Mittapalli O, Wise IL, Shukle RH. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera:Cecidomyiidae). Insect Biochem Mol Biol. 2006;36(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  82. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–96.

    Article  CAS  PubMed  Google Scholar 

  83. de Souza BM, Palma MS. Peptides from Hymenoptera venoms: biochemistry, pharmacology and potential applications in health and biotechnology. In: De Lima ME, AMC P, Martin-Euclaire MF, Zingali RB, editors. Animal Toxins: the State of Art. Perspectives on health and biotechnology. Belo Horizonte, Brazil: Editora UFMG; 2009. p. 273–97.

    Google Scholar 

  84. Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, Van BJ, et al. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon. 2008;52(1):72–83.

    Article  CAS  PubMed  Google Scholar 

  85. Du YR, Xiao Y, Lu ZM, Ding J, Xie F, Fu H, et al. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun. 2011;408(1):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Palm NW, Medzhitov R. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci U S A. 2013;110(5):1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baracchi D, Turillazzi S. Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: Apidae) determined by MALDI-TOF MS. J Insect Physiol. 2010;56(4):366–75.

    Article  CAS  PubMed  Google Scholar 

  88. Baracchi D, Francese S, Turillazzi S. Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon. 2011;58(6–7):550–7.

    Article  CAS  PubMed  Google Scholar 

  89. Qiu Y, Choo YM, Yoon HJ, Jin BR. Molecular cloning and antibacterial activity of bombolitin isolated from the venom of a bumblebee, Bombus terrestris. J Asia Pac Entomol. 2012;15(1):21–5.

    Article  CAS  Google Scholar 

  90. Ziai MR, Russek S, Wang HC, Beer B, Blume AJ. Mast-cell degranulating peptide—a multifunctional neurotoxin. J Pharm Pharmacol. 1990;42(7):457–61.

    Article  CAS  PubMed  Google Scholar 

  91. Baracchi D, Mazza G, Michelucci E, Pieraccini G, Turillazzi S, Moneti G. Top-down sequencing of Apis dorsata apamin by MALDI-TOF MS and evidence of its inactivity against microorganisms. Toxicon. 2013;71:105–12.

    Article  CAS  PubMed  Google Scholar 

  92. Van Vaerenbergh M, Cardoen D, Formesyn EM, Brunain M, Van DG, Blank S, et al. Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5. Insect Mol Biol. 2013;22(2):199–210.

    Article  PubMed  CAS  Google Scholar 

  93. Turillazzi S, Mastrobuoni G, Dani FR, Moneti G, Pieraccini G, la Marca G, et al. Dominulin A and B: two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDI-TOF/TOF, and ESI-ion trap. J Am Soc Mass Spectrom. 2006;17(3):376–83.

    Article  CAS  PubMed  Google Scholar 

  94. Huang R, Wang L, Zhou M, Chen T, Shaw C. Antimicrobial peptides in the venom of the European hornet, Vespa crabro, identified as mastoparan C and crabrolin. Regul Pept. 2010;164(1):48–9.

    Article  Google Scholar 

  95. Yang XW, Wang Y, Lee WH, Zhang Y. Antimicrobial peptides from the venom gland of the social wasp Vespa tropica. Toxicon. 2013;74:151–7.

    Article  CAS  PubMed  Google Scholar 

  96. Vila-Farres X, Giralt E, Vila J. Update of peptides with antibacterial activity. Curr Med Chem. 2012;19(36):6188–98.

    Article  CAS  PubMed  Google Scholar 

  97. Dotimas EM, Hamid KR, Hider RC, Ragnarsson U. Isolation and structure-analysis of bee venom mast-cell degranulating peptide. Biochim Biophys Acta. 1987;911(3):285–93.

    Article  CAS  PubMed  Google Scholar 

  98. Mukai H, Suzuki Y, Kiso Y, Munekata E. Elucidation of structural requirements of mastoparan for mast cell activation-toward the comprehensive prediction of cryptides acting on mast cells. Protein Pept Lett. 2008;15(9):931–7.

    Article  CAS  PubMed  Google Scholar 

  99. Jones S, Howl J. Charge delocalisation and the design of novel mastoparan analogues: enhanced cytotoxicity and secretory efficacy of [Lys(5), Lys(8), Aib(10)]MP. Regul Pept. 2004;121(1–3):121–8.

    Article  CAS  PubMed  Google Scholar 

  100. Piek T, Schmidt JO, Dejong JM, Mantel P. Kinins in ant venoms—a comparison with venoms of related Hymenoptera. Comp Biochem Physiol C. 1989;92(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  101. Griesbacher T, Althuber P, Zenz M, Rainer I, Griengl S, Lembeck F. Vespula vulgaris venom: role of kinins and release of 5-hydroxytryptamine from skin mast cells. Eur J Pharmacol. 1998;351(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  102. Johnson SR, Copello JA, Evans MS, Suarez AV. A biochemical characterization of the major peptides from the venom of the giant Neotropical hunting ant Dinoponera australis. Toxicon. 2010;55(4):702–10.

    Article  CAS  PubMed  Google Scholar 

  103. Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J, Jacobs FJ. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta. 2005;1752(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  104. Vlasak R, Kreil G. Nucleotide sequence of cloned cDNAs coding for preprosecapin, a major product of queen-bee venom glands. Eur J Biochem. 1984;145(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  105. Gomes PC, de Souza BM, Dias NB, Brigatte P, Mourelle D, Arcuri HA, et al. Structure-function relationships of the peptide Paulistine: a novel toxin from the venom of the social wasp Polybia paulista. Biochim Biophys Acta. 2014;1840(1):170–83.

    Article  CAS  PubMed  Google Scholar 

  106. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  107. Escoubas P, King GF. Venomics as a drug discovery platform. Expert Rev Proteomics. 2009;6(3):221–4.

    Article  CAS  PubMed  Google Scholar 

  108. Hoffman DR. Allergens in Hymenoptera venom. XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J Allergy Clin Immunol. 1993;92(5):707–16.

    Article  CAS  PubMed  Google Scholar 

  109. King TP, Lu G. Hornet venom allergen antigen 5, Dol m 5: its T-cell epitopes in mice and its antigenic cross-reactivity with a mammalian testis protein. J Allergy Clin Immunol. 1997;99(5):630–9.

    Article  CAS  PubMed  Google Scholar 

  110. Suck R, Weber B, Kahlert H, Hagen S, Cromwell O, Fiebig H. Purification and immunobiochemical characterization of folding variants of the recombinant major wasp allergen Ves v 5 (antigen 5). Int Arch Allergy Immunol. 2000;121(4):284–91.

    Article  CAS  PubMed  Google Scholar 

  111. Lu G, Villalba M, Coscia MR, Hoffman DR, King TP. Sequence analysis and antigenic cross-reactivity of a venom allergen, antigen 5, from hornets, wasps, and yellow jackets. J Immunol. 1993;150(7):2823–30.

    CAS  PubMed  Google Scholar 

  112. Van Vaerenbergh M, De Smet L, Rafei-Shamsabadi D, Blank S, Spillner E, Ebo DG, et al. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology. Mol Immunol. 2015;63(2):449–55.

    Article  PubMed  CAS  Google Scholar 

  113. Peiren N, de Graaf DC, Brunain M, Bridts CH, Ebo DG, Stevens WJ, et al. Molecular cloning and expression of icarapin, a novel IgE-binding bee venom protein. FEBS Lett. 2006;580(20):4895–9.

    Article  CAS  PubMed  Google Scholar 

  114. Blank S, Seismann H, Michel Y, McIntyre M, Cifuentes L, Braren I, et al. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy. 2011;66(10):1322–9.

    Article  CAS  PubMed  Google Scholar 

  115. Blank S, Seismann H, McIntyre M, Ollert M, Wolf S, Bantleon FI, et al. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris venom. PLoS One. 2013;8(4):e62009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mann CJ, Anderson TA, Read J, Chester SA, Harrison GB, Kochl S, et al. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J Mol Biol. 1999;285(1):391–408.

    Article  CAS  PubMed  Google Scholar 

  117. Blank S, Bantleon FI, McIntyre M, Ollert M, Spillner E. The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate-based reactivity. Clin Exp Allergy. 2012;42(6):976–85.

    Article  CAS  PubMed  Google Scholar 

  118. Kettner A, Hughes GJ, Frutiger S, Astori M, Roggero M, Spertini F, et al. Api m 6: A new bee venom allergen. J Allergy Clin Immunol. 2001;107(5):914–20.

    Article  CAS  PubMed  Google Scholar 

  119. Peiren N, de Graaf DC, Evans JD, Jacobs FJ. Genomic and transcriptional analysis of protein heterogeneity of the honeybee venom allergen Api m 6. Insect Mol Biol. 2006;15(5):577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Vaerenbergh M. Honeybee (Apis mellifera) and bumblebee (Bombus terrestris) venom: analysis and immunological importance of the proteome [dissertation]. Ghent University; 2013.

    Google Scholar 

  121. dos Santos-Pinto JR, dos Santos LD, Andrade AH, Castro FM, Kalil JE, Palma MS. Using proteomic strategies for sequencing and post-translational modifications assignment of antigen-5, a major allergen from the venom of the social wasp Polybia paulista. J Proteome Res. 2014;13(2):855–65.

    Article  PubMed  CAS  Google Scholar 

  122. Kolarich D, Leonard R, Hemmer W, Altmann F. The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris. FEBS J. 2005;272(20):5182–90.

    Article  CAS  PubMed  Google Scholar 

  123. Altmann F, Kubelka V, Staudacher E, Uhl K, Marz L. Characterization of the isoforms of phospholipase-A(2) from honeybee venom. Insect Biochem. 1991;21(5):467–72.

    Article  CAS  Google Scholar 

  124. Blank S, Michel Y, Seismann H, Plum M, Greunke K, Grunwald T, et al. Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells. Protein Pept Lett. 2011;18(4):415–22.

    Article  CAS  PubMed  Google Scholar 

  125. Bouzid W, Verdenaud M, Klopp C, Ducancel F, Noirot C, Vetillard A. De Novo sequencing and transcriptome analysis for Tetramorium bicarinatum: a comprehensive venom gland transcriptome analysis from an ant species. BMC Genomics. 2014;15:987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Owen MD, Sloley BD. 5-Hydroxytryptamine in the venom of the honey bee (Apis mellifera L)—variation with season and with insect age. Toxicon. 1988;26(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  127. Nakajima T. Pharmacological biochemistry of vespid venoms. In: Piek T, editor. Venoms of the Hymenoptera: biochemical, pharmacological and behavioural aspects. London: Academic; 1986. p. 309–27.

    Chapter  Google Scholar 

  128. Owen MD, Braidwoo JL. Quantitative and temporal study of histamine and histidine in honey bee (Apis mellifera-L) venom. Can J Zool. 1974;52(3):387–92.

    Article  CAS  PubMed  Google Scholar 

  129. Geller RG, Yoshida H, Beaven MA, Horakova Z, Atkins FL, Yamabe H, et al. Pharmacologically active substances in venoms of bald-faced hornet, Vespula (Dolichovespula) Maculata, and yellow jacket, Vespula (Vespula) maculifrons. Toxicon. 1976;14(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  130. Owen MD, Bridges AR. Catecholamines in honey bee (Apis mellifera L.) and various vespid (Hymenoptera) venoms. Toxicon. 1982;20(6):1075–84.

    Article  CAS  PubMed  Google Scholar 

  131. Ebo DG, Hagendorens MM, Stevens WJ. Hymenoptera venom allergy. Expert Rev Clin Immunol. 2005;1(1):169–75.

    Article  CAS  PubMed  Google Scholar 

  132. Cichocka-Jarosz E, Brzyski P, Swiebocka E, Lange J, Tobiasz-Adamczyk B, Lis G, et al. Health-related quality of life in polish adolescents with Hymenoptera venom allergy treated with venom immunotherapy. Arch Med Sci. 2012;8(6):1076–82.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Valenta R, Ferreira F, Focke-Tejkl M, Linhart B, Niederberger V, Swoboda I, et al. From allergen genes to allergy vaccines. Annu Rev Immunol. 2010;28:211–41.

    Article  CAS  PubMed  Google Scholar 

  134. Makatsori M, Pfaar O, Lleonart R, Calderon MA. Recombinant allergen immunotherapy: clinical evidence of efficacy. Curr Allergy Asthma Rep. 2013;13(4):371–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen L. Danneels Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danneels, E.L., Van Vaerenbergh, M., de Graaf, D.C. (2017). Hymenoptera Venoms: Toxicity, Components, Stability, and Standardization. In: Freeman, T., Tracy, J. (eds) Stinging Insect Allergy. Springer, Cham. https://doi.org/10.1007/978-3-319-46192-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46192-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46190-8

  • Online ISBN: 978-3-319-46192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics