Skip to main content

Nitrate and Nitrite in Aging and Age-Related Disease

  • Chapter
  • First Online:
Book cover Nitrite and Nitrate in Human Health and Disease

Abstract

Increasing age is associated with declines in multiple domains of physiological function leading to an increased risk of morbidity, disability, and mortality in older adults. Central to these declines in physiological function is a reduction in the bioavailability of the ubiquitous signaling molecule nitric oxide (NO). Supplementation with precursors of NO, nitrate, and nitrite, improves select vascular, physical, and cognitive functions in middle-aged and older adults and may improve age-associated inflammation and oxidative stress. Collectively, current evidence suggests that nitrate and nitrite supplementation represent promising therapeutic strategies for enhancing physiological function with aging and reducing the risk of age-associated disability and risk of chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17):R741–52.

    Article  CAS  PubMed  Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.

    Article  PubMed  Google Scholar 

  3. U.S. Census Bureau Population Division Table 12. Projections of the population by age and sex for the United States 2010-2050; 2008.

    Google Scholar 

  4. Lunenfeld B, Stratton P. The clinical consequences of an ageing world and preventive strategies. Best Pract Res Clin Obstet Gynaecol. 2013;27(5):643–59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kirkland JL. Translating advances from the basic biology of aging into clinical application. Exp Gerontol. 2013;48(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  6. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001–24.

    Article  CAS  PubMed  Google Scholar 

  7. Reutov VP, Sorokina EG. NO-synthase and nitrite-reductase components of nitric oxide cycle. Biochemistry. 1998;63(7):874–84.

    CAS  PubMed  Google Scholar 

  8. Torregrossa AC, Aranke M, Bryan NS. Nitric oxide and geriatrics: implications in diagnostics and treatment of the elderly. J Geriatr Cardiol. 2011;8(4):230–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5(12):865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci. 2011;120(9):357–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R18–36.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol. 2009;4(3):161–77.

    Article  CAS  PubMed  Google Scholar 

  13. Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des. 2014;20(22):3548–53.

    Article  CAS  PubMed  Google Scholar 

  14. Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal. 2014;20(17):2838–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20(1):164–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43(3):332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012;110(8):1109–24.

    Article  CAS  PubMed  Google Scholar 

  18. Schulz E, Wenzel P, Munzel T, Daiber A. Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. 2014;20(2):308–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung JH, Seo AY, Chung SW, Kim MK, Leeuwenburgh C, Yu BP, et al. Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev. 2008;7(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  20. Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol. 2008;105(4):1333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett. 2006;236(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  22. Maggio M, Basaria S, Ble A, Lauretani F, Bandinelli S, Ceda GP, et al. Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab. 2006;91(1):345–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med. 2008;45(4):468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res. 2011;89(3):525–32.

    Article  CAS  PubMed  Google Scholar 

  25. Rocha BS, Gago B, Pereira C, Barbosa RM, Bartesaghi S, Lundberg JO, et al. Dietary nitrite in nitric oxide biology: a redox interplay with implications for pathophysiology and therapeutics. Curr Drug Targets. 2011;12(9):1351–63.

    Article  CAS  PubMed  Google Scholar 

  26. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  27. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation. 2003;107(3):490–7.

    Article  PubMed  Google Scholar 

  28. Cau SB, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol. 2012;3:218.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105(5):1652–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Safar ME, Nilsson PM, Blacher J, Mimran A. Pulse pressure, arterial stiffness, and end-organ damage. Curr Hypertens Rep. 2012;14(4):339–44.

    Article  PubMed  Google Scholar 

  33. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32.

    PubMed  Google Scholar 

  34. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89(Pt B):122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997;20(11 Suppl 2):II-3–10.

    Google Scholar 

  36. Sindler AL, Devan AE, Fleenor BS, Seals DR. Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol. 2014;116(5):463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr. 2015;55(2):451–9.

    Article  PubMed  CAS  Google Scholar 

  38. Ignarro LJ, Gruetter CA. Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols. Biochim Biophys Acta. 1980;631(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  39. Gruetter CA, Gruetter DY, Lyon JE, Kadowitz PJ, Ignarro LJ. Relationship between cyclic guanosine 3′:5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther. 1981;219(1):181–6.

    CAS  PubMed  Google Scholar 

  40. Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981;218(3):739–49.

    CAS  PubMed  Google Scholar 

  41. Moulds RF, Jauernig RA, Shaw J. A comparison of the effects of hydrallazine, diazoxide, sodium nitrite and sodium nitroprusside on human isolated arteries and veins. Br J Clin Pharmacol. 1981;11(1):57–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116(16):1821–31.

    Article  CAS  PubMed  Google Scholar 

  43. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9(12):1498–505.

    Article  CAS  PubMed  Google Scholar 

  44. Ingram TE, Pinder AG, Bailey DM, Fraser AG, James PE. Low-dose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite. Am J Physiol Heart Circ Physiol. 2010;298(2):H331–9.

    Article  CAS  PubMed  Google Scholar 

  45. Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117(5):670–7.

    Article  CAS  PubMed  Google Scholar 

  46. Mack AK, McGowan Ii VR, Tremonti CK, Ackah D, Barnett C, Machado RF, et al. Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol. 2008;142(6):971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maher AR, Arif S, Madhani M, Abozguia K, Ahmed I, Fernandez BO, et al. Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite. Br J Pharmacol. 2013;169(3):659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heiss C, Meyer C, Totzeck M, Hendgen-Cotta UB, Heinen Y, Luedike P, et al. Dietary inorganic nitrate mobilizes circulating angiogenic cells. Free Radic Biol Med. 2012;52(9):1767–72.

    Article  CAS  PubMed  Google Scholar 

  49. Ingram TE, Fraser AG, Bleasdale RA, Ellins EA, Margulescu AD, Halcox JP, et al. Low-dose sodium nitrite attenuates myocardial ischemia and vascular ischemia-reperfusion injury in human models. J Am Coll Cardiol. 2013;61(25):2534–41.

    Article  CAS  PubMed  Google Scholar 

  50. Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.

    Article  CAS  PubMed  Google Scholar 

  51. Joris PJ, Mensink RP. Beetroot juice improves in overweight and slightly obese men postprandial endothelial function after consumption of a mixed meal. Atherosclerosis. 2013;231(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  52. Sindler AL, Fleenor BS, Calvert JW, Marshall KD, Zigler ML, Lefer DJ, et al. Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell. 2011;10(3):429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rammos C, Totzeck M, Deenen R, Kohrer K, Kelm M, Rassaf T and Hendgen-Cotta UB. Dietary nitrate is a modifier of vascular gene expression in old male mice. Oxid Med Cell Longev 2015; 2015:658264 [Epub ahead of print].

    Google Scholar 

  54. Rammos C, Hendgen-Cotta UB, Sobierajski J, Bernard A, Kelm M, Rassaf T. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. Journal of the American College of Cardiology. 2014;63(15):1584–5.

    Google Scholar 

  55. DeVan AE, Johnson LC, Brooks FA, Evans TD, Justice JN, Cruickshank-Quinn C, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol. 2015;120(4):416–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.

    Article  CAS  PubMed  Google Scholar 

  57. Kliche K, Jeggle P, Pavenstadt H, Oberleithner H. Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Arch. 2011;462(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  58. Soldatos G, Cooper ME. Advanced glycation end products and vascular structure and function. Curr Hypertens Rep. 2006;8(6):472–8.

    Article  CAS  PubMed  Google Scholar 

  59. Katsuda S, Okada Y, Minamoto T, Oda Y, Matsui Y, Nakanishi I. Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arteriscler Thromb. 1992;12(4):494–502.

    Article  CAS  Google Scholar 

  60. Semba RD, Sun K, Schwartz AV, Varadhan R, Harris TB, Satterfield S, et al. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with arterial stiffness in older adults. J Hypertens. 2015;33(4):797–803; discussion.

    Google Scholar 

  61. Yoon SJ, Park S, Park C, Chang W, Cho DK, Ko YG, et al. Association of soluble receptor for advanced glycation end-product with increasing central aortic stiffness in hypertensive patients. Coron Artery Dis. 2012;23(2):85–90.

    Article  PubMed  Google Scholar 

  62. Fleenor BS, Sindler AL, Eng JS, Nair DP, Dodson RB, Seals DR. Sodium nitrite de-stiffening of large elastic arteries with aging: role of normalization of advanced glycation end-products. Exp Gerontol. 2012;47(8):588–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide. 2012;26(4):197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Omar SA, Fok H, Tilgner KD, Nair A, Hunt J, Jiang B, et al. Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation. 2015;131(4):381–9, discussion 389.

    Article  CAS  PubMed  Google Scholar 

  65. Ghosh SM, Kapil V, Fuentes-Calvo I, Bubb KJ, Pearl V, Milsom AB, et al. Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension. 2013;61(5):1091–102.

    Article  CAS  PubMed  Google Scholar 

  66. Houston M, Hay J. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):524–9.

    CAS  Google Scholar 

  67. Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  68. Rigaud A-S, Forette B. Hypertension in older adults. J Gerontol Ser A Biol Sci Med Sci. 2001;56(4):M217–25.

    Article  CAS  Google Scholar 

  69. Montenegro MF, Pinheiro LC, Amaral JH, Marcal DM, Palei AC, Costa-Filho AJ, et al. Antihypertensive and antioxidant effects of a single daily dose of sodium nitrite in a model of renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(5):509–17.

    Article  CAS  PubMed  Google Scholar 

  70. Pluta RM, Oldfield EH, Bakhtian KD, Fathi AR, Smith RK, Devroom HL, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011;6(1), e14504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14(7):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biswas OS, Gonzalez VR, Schwarz ER. Effects of an oral nitric oxide supplement on functional capacity and blood pressure in adults with prehypertension. J Cardiovasc Pharmacol Ther. 2015;20(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  73. Nagamani SC, Campeau PM, Shchelochkov OA. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siervo M, Lara J, Jajja A, Sutyarjoko A, Ashor A, Brandt K, et al. Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: an individual participant meta-analysis. Nitric Oxide. 2015;47:97–105.

    Article  CAS  PubMed  Google Scholar 

  75. Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97.

    Article  CAS  PubMed  Google Scholar 

  76. Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, et al. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102:368–75.

    Article  CAS  PubMed  Google Scholar 

  77. Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143(6):818–26.

    Article  CAS  PubMed  Google Scholar 

  78. Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, et al. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R73–83.

    Article  CAS  PubMed  Google Scholar 

  79. Rammos C, Hendgen-Cotta UB, Pohl J, Totzeck M, Luedike P, Schulze VT, et al. Modulation of circulating macrophage migration inhibitory factor in the elderly. Biomed Res Int. 2014;2014:582586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Calvert JW, Lefer DJ. Myocardial protection by nitrite. Cardiovasc Res. 2009;83(2):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101(37):13683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salloum FN, Sturz GR, Yin C, Rehman S, Hoke NN, Kukreja RC, et al. Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: possible involvement of endogenous H2S. Exp Biol Med. 2015;240(5):669–81.

    Article  CAS  Google Scholar 

  84. Siddiqi N, Neil C, Bruce M, MacLennan G, Cotton S, Papadopoulou S, et al. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J. 2014;35(19):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jones DA, Pellaton C, Velmurugan S, Rathod KS, Andiapen M, Antoniou S, et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res. 2015;116(3):437–47.

    Article  CAS  PubMed  Google Scholar 

  86. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article  PubMed  Google Scholar 

  87. Zakeri R, Levine JA, Koepp GA, Borlaug BA, Chirinos JA, LeWinter M, et al. Nitrate’s effect on activity tolerance in heart failure with preserved ejection fraction trial: rationale and design. Circ Heart Fail. 2015;8:221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131(4):371–80, discussion 380.

    Article  CAS  PubMed  Google Scholar 

  89. Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208.

    Article  CAS  PubMed  Google Scholar 

  90. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14(2):224–32.

    Article  CAS  PubMed  Google Scholar 

  91. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke. 1995;26(7):1171–7.

    Article  CAS  PubMed  Google Scholar 

  93. Raz N. Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In: Craik FIM, Salthouse TA, editors. Handbook of aging and cognition. 2nd ed. Mahwah: Erlbaum; 2000. p. 1–90.

    Google Scholar 

  94. Pantoni L, Garcia JH. Cognitive impairment and cellular/vascular changes in the cerebral white matter. Ann N Y Acad Sci. 1997;826:92–102.

    Article  CAS  PubMed  Google Scholar 

  95. Pugh KG, Lipsitz LA. The microvascular frontal-subcortical syndrome of aging. Neurobiol Aging. 2002;23(3):421–31.

    Article  PubMed  Google Scholar 

  96. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol. 2000;47(2):145–51.

    Article  PubMed  Google Scholar 

  97. de Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol. 2002;52(3):335–41.

    Article  PubMed  Google Scholar 

  98. de la Torre JC, Stefano GB. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev. 2000;34(3):119–36.

    Article  PubMed  Google Scholar 

  99. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795–807.

    Article  CAS  PubMed  Google Scholar 

  100. Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Breteler MM, Bots ML, Ott A, Hofman A. Risk factors for vascular disease and dementia. Haemostasis. 1998;28(3–4):167–73.

    CAS  PubMed  Google Scholar 

  102. Celsis P, Agniel A, Cardebat D, Demonet JF, Ousset PJ, Puel M. Age related cognitive decline: a clinical entity? A longitudinal study of cerebral blood flow and memory performance. J Neurol Neurosurg Psychiatry. 1997;62(6):601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.

    Article  CAS  PubMed  Google Scholar 

  104. Pitsikas N, Rigamonti AE, Cella SG, Sakellaridis N, Muller EE. The nitric oxide donor molsidomine antagonizes age-related memory deficits in the rat. Neurobiol Aging. 2005;26(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  105. Paul V, Ekambaram P. Involvement of nitric oxide in learning & memory processes. Indian J Med Res. 2011;133(5):471.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Aamand R, Ho YC, Dalsgaard T, Roepstorff A, Lund TE. Dietary nitrate facilitates an acetazolamide-induced increase in cerebral blood flow during visual stimulation. J Appl Physiol. 2014;116(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  107. Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293(12):1477–84.

    Article  CAS  PubMed  Google Scholar 

  108. Justice JN, Johnson LC, DeVan AE, Cruickshank-Quinn C, Reisdorph N, Bassett CJ, et al. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults. Aging. 2015;7(11):1004–21.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cooper R, Kuh D, Cooper C, Gale CR, Lawlor DA, Matthews F, et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40(1):14–23.

    Article  PubMed  Google Scholar 

  111. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fried LP, Guralnik JM. Disability in older adults: evidence regarding significance, etiology, and risk. J Am Geriatr Soc. 1997;45(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  113. Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, et al. Disability, physical activity, and muscle strength in older women: the Women’s Health and Aging Study. Arch Phys Med Rehabil. 1999;80(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  114. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27.

    Article  CAS  PubMed  Google Scholar 

  115. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  116. Payne AM, Delbono O. Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev. 2004;32(1):36–40.

    Article  PubMed  Google Scholar 

  117. Conley KE, Amara CE, Jubrias SA, Marcinek DJ. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp Physiol. 2007;92(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  118. Verbrugge LM, Jette AM. The disablement process. Social Sci Med. 1994;38(1):1–14.

    Article  CAS  Google Scholar 

  119. Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, et al. Dietary nitrate increases tetanic [Ca2+] i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590(15):3575–83.

    Google Scholar 

  120. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  121. Heffernan KS, Chale A, Hau C, Cloutier GJ, Phillips EM, Warner P, et al. Systemic vascular function is associated with muscular power in older adults. J Aging Res. 2012;2012:386387.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ronnback M, Hernelahti M, Hamalainen E, Groop PH, Tikkanen H. Effect of physical activity and muscle morphology on endothelial function and arterial stiffness. Scand J Med Sci Sports. 2007;17(5):573–9.

    CAS  PubMed  Google Scholar 

  123. Justice JN, Gioscia-Ryan RA, Johnson LC, Battson ML, de Picciotto NE, Beck HJ, et al. Sodium nitrite supplementation improves motor function and skeletal muscle inflammatory profile in old male mice. J Appl Physiol (1985). 2014:jap.00608.2014.

    Google Scholar 

  124. Cermak NM, Gibala MJ, van Loon LJ. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  125. Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110(3):591–600.

    Article  CAS  PubMed  Google Scholar 

  126. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf). 2007;191(1):59–66.

    Article  CAS  Google Scholar 

  127. Fricke O, Baecker N, Heer M, Tutlewski B, Schoenau E. The effect of l‐arginine administration on muscle force and power in postmenopausal women. Clin Physiol Funct Imaging. 2008;28(5):307–11.

    Article  CAS  PubMed  Google Scholar 

  128. Casey DP, Treichler DP, Ganger CT, Schneider AC, Ueda K. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults. J Appl Physiol. 2015;118(2):178–86.

    Article  PubMed  CAS  Google Scholar 

  129. Kenjale AA, Ham KL, Stabler T, Robbins JL, Johnson JL, Vanbruggen M, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol. 2011;110(6):1582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baliga RS, Milsom AB, Ghosh SM, Trinder SL, Macallister RJ, Ahluwalia A, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation. 2012;125(23):2922–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berry MJ, Justus NW, Hauser JI, Case AH, Helms CC, Basu S, et al. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide. 2014;48:22–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Dezfulian C, Alekseyenko A, Dave KR, Raval AP, Do R, Kim F, et al. Nitrite therapy is neuroprotective and safe in cardiac arrest survivors. Nitric Oxide. 2012;26(4):241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007;204(9):2089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang WZ, Fang XH, Stephenson LL, Zhang X, Williams SJ, Baynosa RC, et al. Nitrite attenuates ischemia-reperfusion-induced microcirculatory alterations and mitochondrial dysfunction in the microvasculature of skeletal muscle. Plast Reconstr Surg. 2011;128(4):279e–87.

    Google Scholar 

  135. Tripatara P, Patel NS, Webb A, Rathod K, Lecomte FM, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18(2):570–80.

    Article  CAS  PubMed  Google Scholar 

  136. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115(5):1232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sugimoto R, Okamoto T, Nakao A, Zhan J, Wang Y, Kohmoto J, et al. Nitrite reduces acute lung injury and improves survival in a rat lung transplantation model. Am J Transplant. 2012;12(11):2938–48.

    Article  CAS  PubMed  Google Scholar 

  138. Milsom AB, Patel NS, Mazzon E, Tripatara P, Storey A, Mota-Filipe H, et al. Role for endothelial nitric oxide synthase in nitrite-induced protection against renal ischemia-reperfusion injury in mice. Nitric Oxide. 2010;22(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  139. Kelpke SS, Chen B, Bradley KM, Teng X, Chumley P, Brandon A, et al. Sodium nitrite protects against kidney injury induced by brain death and improves post-transplant function. Kidney Int. 2012;82(3):304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhan J, Nakao A, Sugimoto R, Dhupar R, Wang Y, Wang Z, et al. Orally administered nitrite attenuates cardiac allograft rejection in rats. Surgery. 2009;146(2):155–65.

    Article  PubMed  Google Scholar 

  141. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38.

    CAS  PubMed  Google Scholar 

  142. Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging—matters of the heart and mind. Int J Mol Sci. 2013;14(9):17897–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;23 Suppl 15:S29–36.

    PubMed  Google Scholar 

  144. Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, et al. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med. 2013;45(1):17–36.

    Article  CAS  PubMed  Google Scholar 

  145. Paneni F, Costantino S, Cosentino F. Molecular pathways of arterial aging. Clin Sci (Lond). 2015;128(2):69–79.

    Article  CAS  Google Scholar 

  146. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci. 2010;65(10):1028–41.

    Article  PubMed  Google Scholar 

  147. Zhu SG, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L. Dietary nitrate supplementation protects against Doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol. 2011;57(21):2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89(3):574–85.

    Article  PubMed  CAS  Google Scholar 

  149. Bir SC, Pattillo CB, Pardue S, Kolluru GK, Docherty J, Goyette D, et al. Nitrite anion stimulates ischemic arteriogenesis involving NO metabolism. Am J Physiol Heart Circ Physiol. 2012;303(2):H178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Oudot A, Martin C, Busseuil D, Vergely C, Demaison L, Rochette L. NADPH oxidases are in part responsible for increased cardiovascular superoxide production during aging. Free Radic Biol Med. 2006;40(12):2214–22.

    Article  CAS  PubMed  Google Scholar 

  151. Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM. Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol. 2010;48(4):765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Krause K-H. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol. 2007;42(4):256–62.

    Article  CAS  PubMed  Google Scholar 

  153. Schuhmacher S, Oelze M, Bollmann F, Kleinert H, Otto C, Heeren T, et al. Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes. 2011;60(10):2608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. İnal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1–2):75–80.

    Article  PubMed  Google Scholar 

  155. Corbi G, Conti V, Russomanno G, Rengo G, Vitulli P, Ciccarelli AL, et al. Is physical activity able to modify oxidative damage in cardiovascular aging? Oxid Med Cell Longev. 2012;2012:728547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Singh M, Arya A, Kumar R, Bhargava K, Sethy NK. Dietary nitrite attenuates oxidative stress and activates antioxidant genes in rat heart during hypobaric hypoxia. Nitric oxide : biology and chemistry/official journal of the Nitric Oxide Society. 2012;26(1):61–73.

    Google Scholar 

  157. Lu XX, Wang SQ, Zhang Z, Xu HR, Liu B, Huangfu CS. [Protective effects of sodium nitrite preconditioning against alcohol-induced acute liver injury in mice]. Sheng Li Xue Bao [Acta Physiologica Sinica]. 2012;64(3):313–20.

    Google Scholar 

  158. Doganci S, Yildirim V, Bolcal C, Korkusuz P, Gumusel B, Demirkilic U, et al. Sodium nitrite and cardioprotective effect in pig regional myocardial ischemia-reperfusion injury model. Adv Clin Exp Med. 2012;21(6):713–26.

    PubMed  Google Scholar 

  159. Perlman DH, Bauer SM, Ashrafian H, Bryan NS, Garcia-Saura MF, Lim CC, et al. Mechanistic insights into nitrite-induced cardioprotection using an integrated metabolomic/proteomic approach. Circ Res. 2009;104(6):796–804.

    Article  CAS  PubMed  Google Scholar 

  160. Mohler III ER, Hiatt WR, Gornik HL, Kevil CG, Quyyumi A, Haynes WG, et al. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: safety, walking distance and endothelial function. Vasc Med. 2014;19(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  161. Delp MD, Behnke BJ, Spier SA, Wu G, Muller-Delp JM. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J Physiol. 2008;586(4):1161–8.

    Article  CAS  PubMed  Google Scholar 

  162. Stokes KY, Dugas TR, Tang Y, Garg H, Guidry E, Bryan NS. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296(5):H1281–8.

    Article  CAS  PubMed  Google Scholar 

  163. Ungvari Z, Sonntag WE, Csiszar A. Mitochondria and aging in the vascular system. J Mol Med (Berl). 2010;88(10):1021–7.

    Article  CAS  Google Scholar 

  164. Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112(8):1171–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011;124(4):444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol. 2014;592(Pt 12):2549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniam V, Watson PA, et al. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol. 2013;304(12):H1624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shiva S. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 2013;1(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shiva S, Rassaf T, Patel RP, Gladwin MT. The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc Res. 2011;89(3):566–73.

    Article  CAS  PubMed  Google Scholar 

  170. Mo L, Wang Y, Geary L, Corey C, Alef MJ, Beer-Stolz D, et al. Nitrite activates AMP kinase to stimulate mitochondrial biogenesis independent of soluble guanylate cyclase. Free Radic Biol Med. 2012;53(7):1440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Murillo D, Kamga C, Mo L, Shiva S. Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide. 2011;25(2):70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kamga Pride C, Mo L, Quesnelle K, Dagda RK, Murillo D, Geary L, et al. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovasc Res. 2014;101(1):57–68.

    Article  PubMed  CAS  Google Scholar 

  173. Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, et al. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. J Exp Med. 2009;206(13):2915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877–82.

    Article  PubMed  Google Scholar 

  175. Wang M, Jiang L, Monticone RE, Lakatta EG. Proinflammation: the key to arterial aging. Trends Endocrinol Metab. 2014;25(2):72–9.

    Article  CAS  PubMed  Google Scholar 

  176. Jadert C, Petersson J, Massena S, Ahl D, Grapensparr L, Holm L, et al. Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury. Free Radic Biol Med. 2012;52(3):683–92.

    Article  PubMed  CAS  Google Scholar 

  177. Cauwels A, Brouckaert P. Nitrite regulation of shock. Cardiovasc Res. 2011;89(3):553–9.

    Article  CAS  PubMed  Google Scholar 

  178. Hamburger T, Broecker-Preuss M, Hartmann M, Schade FU, de Groot H, Petrat F. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. J Surg Res. 2013;183(1):e7–21.

    Article  CAS  PubMed  Google Scholar 

  179. Murata I, Nozaki R, Ooi K, Ohtake K, Kimura S, Ueda H, et al. Nitrite reduces ischemia/reperfusion-induced muscle damage and improves survival rates in rat crush injury model. J Trauma Acute Care Surg. 2012;72(6):1548–54.

    Article  CAS  PubMed  Google Scholar 

  180. Okamoto T, Tang X, Janocha A, Farver CF, Gladwin MT, McCurry KR. Nebulized nitrite protects rat lung grafts from ischemia reperfusion injury. J Thorac Cardiovasc Surg. 2013;145(4):1108–16.

    Article  CAS  PubMed  Google Scholar 

  181. Pattillo CB, Fang K, Terracciano J, Kevil CG. Reperfusion of chronic tissue ischemia: nitrite and dipyridamole regulation of innate immune responses. Ann N Y Acad Sci. 2011;1207:83–8.

    Article  CAS  Google Scholar 

  182. Pattillo CB, Fang K, Pardue S, Kevil CG. Genome expression profiling and network analysis of nitrite therapy during chronic ischemia: possible mechanisms and interesting molecules. Nitric Oxide. 2011;22(2):168–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Seals Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Johnson, L.C., DeVan, A.E., Justice, J.N., Seals, D.R. (2017). Nitrate and Nitrite in Aging and Age-Related Disease. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46189-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46189-2_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46187-8

  • Online ISBN: 978-3-319-46189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics