Skip to main content

Nitrite and Nitrate as a Treatment for Hypertension

  • Chapter
  • First Online:
Nitrite and Nitrate in Human Health and Disease

Part of the book series: Nutrition and Health ((NH))

  • 1436 Accesses

Abstract

Among the myriad approaches to target the pathophysiology of hypertension has been the delivery of vasodilatory nitric oxide. Traditional approaches using organic nitric oxide donors have not delivered benefits in clinical trials. Recent evidence suggests that provision of inorganic nitrate, via conversion to nitrite, reduces blood pressure in a dose-dependent manner in healthy subjects and delivers robust and consistent blood pressure reduction in hypertensive patients that could be projected to significantly reduce cardiovascular morbidity and mortality. Furthermore, increasing evidence points to the importance of the entero-salivary circulation of nitrate to nitrite in setting basal blood pressure levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ, Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60.

    Article  PubMed  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    Article  PubMed  Google Scholar 

  3. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303:2043–50.

    Article  CAS  PubMed  Google Scholar 

  4. Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124:1046–58.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodgers A, Vaughan P, Prentice T, et al. The world health report—reducing risks, promoting healthy life. Geneva: World Health Organization; 2002.

    Google Scholar 

  7. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.

    Article  CAS  PubMed  Google Scholar 

  8. Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens. 2014;32(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  9. National Institute of Clinical Excellence. Hypertension: clinical management of primary hypertension in adults; 2011.

    Google Scholar 

  10. Leung AA, Nerenberg K, Daskalopoulou SS, et al. Hypertension Canada’s 2016 Canadian hypertension education program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2016;32:569–88.

    Article  PubMed  Google Scholar 

  11. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  12. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Collaboration PS. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  13. Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wright JTJ, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  CAS  PubMed  Google Scholar 

  15. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet. 2014;383:1912–9.

    Article  PubMed  Google Scholar 

  16. Joffres M, Falaschetti E, Gillespie C, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open. 2013;3, e003423.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herman AG, Moncada S. Therapeutic potential of nitric oxide donors in the prevention and treatment of atherosclerosis. Eur Heart J. 2005;26:1945–55.

    Article  CAS  PubMed  Google Scholar 

  18. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  21. Furchgott RF. Studies on relaxation relaxation of rabbit aorta rabbit aorta by sodium nitrite: basis for the proposal that the acid-activatable component of the inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM, editor. Vasodilatation: vascular smooth muscle, peptides, and endothelium. New York: Raven; 1988. p. 401–14.

    Google Scholar 

  22. Rees DD, Palmer RM, Hodson HF, Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989;96:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989;86:3375–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;334:997–1000.

    Article  Google Scholar 

  25. Blackman DJ, Morris-Thurgood JA, Atherton JJ, et al. Endothelium-derived nitric oxide contributes to the regulation of venous tone in humans. Circulation. 2000;101:165–70.

    Article  CAS  PubMed  Google Scholar 

  26. Vallance P, Collier J, Moncada S. Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation in human veins in vivo. Cardiovasc Res. 1989;23:1053–7.

    Article  CAS  PubMed  Google Scholar 

  27. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377:239–42.

    Article  CAS  PubMed  Google Scholar 

  28. Ohashi Y, Kawashima S, Hirata K, et al. Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest. 1998;102:2061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J. 1991;121:1244–63.

    Article  CAS  PubMed  Google Scholar 

  30. Linder L, Kiowski W, Bühler FR, Lüscher TF. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation. 1990;81:1762–7.

    Article  CAS  PubMed  Google Scholar 

  31. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468–74.

    Article  CAS  PubMed  Google Scholar 

  32. Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N. Basal nitric oxide synthesis in essential hypertension. Lancet. 1997;349:837–42.

    Article  CAS  PubMed  Google Scholar 

  33. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Janssens SP, Wingler K, Schmidt HH, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol. 2011;301:H634–46.

    Article  CAS  PubMed  Google Scholar 

  35. Guthrie F. Contributions to the knowledge of the amyl group. Q J Chem Soc. 1859;11:245–52.

    Article  Google Scholar 

  36. Brunton TD. On the use of nitrite of amyl in angina pectoris. Lancet. 1867;2:97–8.

    Article  Google Scholar 

  37. Murrell W. Nitro-glycerine as a remedy for angina pectoris. Lancet. 1879;113:80–1.

    Article  Google Scholar 

  38. Murrell W. Nitro-glycerine as a remedy for angina pectoris. Lancet. 1879;113:113–5.

    Article  Google Scholar 

  39. Murrell W. Nitro-glycerine as a remedy for angina pectoris. Lancet. 1879;113:151–2.

    Article  Google Scholar 

  40. Murrell W. Nitro-glycerine as a remedy for angina pectoris. Lancet. 1879;113:225–7.

    Article  Google Scholar 

  41. Elkayam U, Kulick D, McIntosh N, Roth A, Hsueh W, Rahimtoola SH. Incidence of early tolerance to hemodynamic effects of continuous infusion of nitroglycerin in patients with coronary artery disease and heart failure. Circulation. 1987;76:577–84.

    Article  CAS  PubMed  Google Scholar 

  42. Caramori PR, Adelman AG, Azevedo ER, Newton GE, Parker AB, Parker JD. Therapy with nitroglycerin increases coronary vasoconstriction in response to acetylcholine. J Am Coll Cardiol. 1998;32:1969–74.

    Article  CAS  PubMed  Google Scholar 

  43. Gori T, Mak SS, Kelly S, Parker JD. Evidence supporting abnormalities in nitric oxide synthase function induced by nitroglycerin in humans. J Am Coll Cardiol. 2001;38:1096–101.

    Article  CAS  PubMed  Google Scholar 

  44. Heitzer T, Just H, Brockhoff C, Meinertz T, Olschewski M, Münzel T. Long-term nitroglycerin treatment is associated with supersensitivity to vasoconstrictors in men with stable coronary artery disease: prevention by concomitant treatment with captopril. J Am Coll Cardiol. 1998;31:83–8.

    Article  CAS  PubMed  Google Scholar 

  45. ISIS-4 Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. Lancet. 1995;345:669–85.

    Google Scholar 

  46. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411:217–30.

    Article  CAS  PubMed  Google Scholar 

  47. Benjamin N, O’Driscoll F, Dougall H, et al. Stomach NO synthesis. Nature. 1994;368:502.

    Article  CAS  PubMed  Google Scholar 

  48. Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35:1543–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol. 2009;297:H2068–74.

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem. 2004;279:16939–46.

    Article  CAS  PubMed  Google Scholar 

  51. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101:13683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Webb AJ, Milsom AB, Rathod KS, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res. 2008;103:957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC. Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun. 1998;249:767–72.

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem. 2008;283:17855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Krizowski S, Fischer-Schrader K, et al. Sulfite oxidase catalyzes single-electron transfer at molybdenum domain to reduce nitrite to nitric oxide. Antioxid Redox Signal. 2015;23:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brooks J. The action of nitrite on haemoglobin in the absence of oxygen. Proc R Soc Lond B Biol Sci. 1937;123:368–82.

    Article  CAS  Google Scholar 

  57. Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    Article  CAS  PubMed  Google Scholar 

  58. Crawford JH, Isbell TS, Huang Z, et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood. 2006;107:566–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doyle MP, Pickering RA, DeWeert TM, Hoekstra JW, Pater D. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J Biol Chem. 1981;256:12393–8.

    CAS  PubMed  Google Scholar 

  60. Nagababu E, Ramasamy S, Abernethy DR, Rifkind JM. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem. 2003;278:46349–56.

    Article  CAS  PubMed  Google Scholar 

  61. Rassaf T, Flögel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100:1749–54.

    Article  CAS  PubMed  Google Scholar 

  62. Shiva S, Huang Z, Grubina R, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007;100:654–61.

    Article  CAS  PubMed  Google Scholar 

  63. Petersen MG, Dewilde S, Fago A. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem. 2008;102:1777–82.

    Article  CAS  PubMed  Google Scholar 

  64. Tiso M, Tejero J, Basu S, et al. Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem. 2011;286:18277–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castello P, David PS, McClure T, Crook Z, Poyton R. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–87.

    Article  CAS  PubMed  Google Scholar 

  66. Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun. 2006;341:816–21.

    Article  CAS  PubMed  Google Scholar 

  67. Gladwin MT, Schechter AN, Kim-Shapiro DB, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005;1:308–14.

    Article  CAS  PubMed  Google Scholar 

  68. van Faassen EE, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29:683–741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Webb AJ, Ahluwalia A. Mechanisms of nitrite reduction in ischemia in the cardiovascular system. In: Ignarro L, editor. Nitric oxide: biology and pathobiology. Los Angeles: Elsevier; 2010. p. 555–86.

    Chapter  Google Scholar 

  70. Maruyuma S, Murumatsu K, Shimizu S, Maki S. Reduction of nitrate with bacillus coagulans in human saliva. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1976;17:19–26.

    Article  Google Scholar 

  71. Tannenbaum SR, Weisman M, Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol. 1976;14:549–52.

    Article  CAS  PubMed  Google Scholar 

  72. Murumatsu K, Maruyuma S, Nishizawa S. Nitrate-reducing bacterial flora and its ability to reduce nitrate in human saliva. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1979;20:106–14.

    Article  Google Scholar 

  73. Duncan C, Dougall H, Johnston P, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1:546–51.

    Article  CAS  PubMed  Google Scholar 

  74. Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci. 2005;113:14–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bonner FT, Hughes MN. The aqueous solution chemistry of nitrogen in low positive oxidation states. Comm Inorg Chem. 1988;7:215–34.

    Article  CAS  Google Scholar 

  76. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci U S A. 1993;90:8103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reutov VP, Sorokina EG. NO-synthase and nitrite-reductase components of nitric oxide cycle. Biochemistry (Mosc). 1998;63:874–84.

    CAS  Google Scholar 

  78. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–67.

    Article  CAS  PubMed  Google Scholar 

  79. Kapil V, Webb AJ, Ahluwalia A. Inorganic nitrate and the cardiovascular system. Heart. 2010;96:1703–9.

    Article  CAS  PubMed  Google Scholar 

  80. Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1:804–9.

    Article  CAS  PubMed  Google Scholar 

  81. Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL. Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem. 1997;272:21420–6.

    Article  CAS  PubMed  Google Scholar 

  82. Reichert E, Mitchell SW. On the physiological action of potassium nitrite. Am J Med Sci. 1880;80:158–80.

    Article  Google Scholar 

  83. Matthew E. Vaso-dilators in high blood pressure. QJM. 1909;2:261–78.

    Google Scholar 

  84. Wallace GB, Ringer AI. The lowering of blood-pressure by the nitrite group. JAMA. 1909;LIII:1629–30.

    Google Scholar 

  85. Butler AR, Feelisch M. Therapeutic uses of inorganic nitrite and nitrate: from the past to the future. Circulation. 2008;117:2151–9.

    Article  CAS  PubMed  Google Scholar 

  86. Butler A, Moffett J. A treatment for cardiovascular dysfunction in a Dunhuang medical manuscript. In: Lo EY, Cullen C, editors. Medieval Chinese medicine: the Dunhuang medical manuscripts. London: RoutledgeCurzon; 2005. p. 363–8.

    Google Scholar 

  87. Frick A. Medical treatment of peptic ulcer without alkalis. JAMA. 1924;82:595–9.

    Article  Google Scholar 

  88. Salen EB. On the incidence and clinical significance of nitrites in the urine of humans. Acta Med Scand. 1925;63:369–424.

    Article  Google Scholar 

  89. Zobell CE. Factors influencing the reduction of nitrates and nitrites by bacteria in semisolid media. J Bacteriol. 1932;24:273–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stieglitz EJ. Bismuth Subnitrate in the therapy of hypertension. J Pharmacol Exp Ther. 1927;32:23–35.

    CAS  Google Scholar 

  91. Stieglitz EJ. The pharmacodynamics and value of bismuth subnitrate in hypertension. J Pharmacol Exp Ther. 1928;34:407–23.

    CAS  Google Scholar 

  92. Stieglitz EJ. Bismuth subnitrate in the treatment of arterial hypertension. JAMA. 1930;95:842–6.

    Article  Google Scholar 

  93. Stieglitz EJ. Therapeutic results with bismuth subnitrate in hypertensive arterial disease. J Pharmacol Exp Ther. 1932;46:343–56.

    CAS  Google Scholar 

  94. Stieglitz EJ, Palmer AE. A colorimetric method for the determination of nitrite in blood. J Pharmacol Exp Ther. 1934;51:398–410.

    CAS  Google Scholar 

  95. Stieglitz EJ, Palmer AE. The blood nitrite. Arch Intern Med. 1937;59:620–30.

    Article  CAS  Google Scholar 

  96. Stieglitz EJ, Palmer AE. Studies on the pharmacology of the nitrite effect of bismuth subnitrate. J Pharmacol Exp Ther. 1936;56:216–22.

    CAS  Google Scholar 

  97. Comly HH. Cyanosis in infants caused by nitrates in well water. JAMA. 1945;129:112–6.

    Article  CAS  Google Scholar 

  98. Walton G. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am J Public Health Nations Health. 1951;41:986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Santamaria P. Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric. 2006;86:10–7.

    Article  CAS  Google Scholar 

  100. Golzarand M, Bahadoran Z, Mirmiran P, Zadeh-Vakili A, Azizi F. Consumption of nitrate-containing vegetables is inversely associated with hypertension in adults: a prospective investigation from the Tehran Lipid and Glucose Study. J Nephrol. 2015.

    Google Scholar 

  101. Joshipura KJ, Hu FB, Manson JE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134:1106–14.

    Article  CAS  PubMed  Google Scholar 

  102. Joshipura KJ, Ascherio A, Manson JE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233–9.

    Article  CAS  PubMed  Google Scholar 

  103. Hung HC, Joshipura KJ, Jiang R, et al. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst. 2004;96:1577–84.

    Article  PubMed  Google Scholar 

  104. Classen HG, Stein-Hammer C, Thöni H. Hypothesis: the effect of oral nitrite on blood pressure in the spontaneously hypertensive rat. Does dietary nitrate mitigate hypertension after conversion to nitrite? J Am Coll Nutr. 1990;9:500–2.

    Article  CAS  PubMed  Google Scholar 

  105. Lundberg JO, Feelisch M, Björne H, Jansson EA, Weitzberg E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide. 2006;15:359–62.

    Article  CAS  PubMed  Google Scholar 

  106. Ralt D. Does NO, metabolism play a role in the effects of vegetables in health? Nitric oxide formation via the reduction of nitrites and nitrates. Med Hypotheses. 2009;73:794–6.

    Article  CAS  PubMed  Google Scholar 

  107. Webb AJ, Patel N, Loukogeorgakis S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rouse IL, Beilin LJ, Armstrong BK, Vandongen R. Blood-pressure-lowering effect of a vegetarian diet: controlled trial in normotensive subjects. Lancet. 1983;322:742–3.

    Article  Google Scholar 

  109. Margetts BM, Beilin LJ, Vandongen R, Armstrong BK. Vegetarian diet in mild hypertension: a randomised controlled trial. BMJ. 1986;293:1468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. John JH, Ziebland S, Yudkin P, Roe LS, Neil HA. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet. 2002;359:1969–74.

    Article  CAS  PubMed  Google Scholar 

  111. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    Article  CAS  PubMed  Google Scholar 

  112. Furchgott RF, Bhadrakom S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J Pharmacol Exp Ther. 1953;108:129–43.

    CAS  PubMed  Google Scholar 

  113. Johnson G, Tsao PS, Mulloy D, Lefer AM. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther. 1990;252:35–41.

    CAS  PubMed  Google Scholar 

  114. Modin A, Björne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand. 2001;171:9–16.

    CAS  PubMed  Google Scholar 

  115. Dejam A, Hunter CJ, Tremonti C, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116:1821–31.

    Article  CAS  PubMed  Google Scholar 

  116. Maher AR, Milsom AB, Gunaruwan P, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117:670–7.

    Article  CAS  PubMed  Google Scholar 

  117. Weiss S, Wilkins RW, Haynes FW. The nature of circulatory collapse induced by sodium nitrite. J Clin Invest. 1937;16:73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wilkins RW, Haynes FW, Weiss S. The role of the venous system in circulatory collapse induced by sodium nitrite. J Clin Invest. 1937;16:85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Omar SA, Fok H, Tilgner KD, et al. Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation. 2015;131:381–9; discussion 389.

    Article  CAS  PubMed  Google Scholar 

  120. Vleeming W, van de Kuil A, te Biesebeek JD, Meulenbelt J, Boink AB. Effect of nitrite on blood pressure in anaesthetized and free-moving rats. Food Chem Toxicol. 1997;35:615–9.

    Article  CAS  PubMed  Google Scholar 

  121. Beier S, Classen HG, Loeffler K, Schumacher E, Thöni H. Antihypertensive effect of oral nitrite uptake in the spontaneously hypertensive rat. Arzneimittelforschung. 1995;45:258–61.

    CAS  PubMed  Google Scholar 

  122. Haas M, Classen HG, Thöni H, Classen UG, Drescher B. Persistent antihypertensive effect of oral nitrite supplied up to one year via the drinking water in spontaneously hypertensive rats. Arzneimittelforschung. 1999;49:318–23.

    CAS  PubMed  Google Scholar 

  123. Amaral JH, Ferreira GC, Pinheiro LC, Montenegro MF, Tanus-Santos JE. Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol. 2015;5:340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Montenegro MF, Amaral JH, Pinheiro LC, et al. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med. 2011;51:144–52.

    Article  CAS  PubMed  Google Scholar 

  125. Montenegro MF, Pinheiro LC, Amaral JH, et al. Antihypertensive and antioxidant effects of a single daily dose of sodium nitrite in a model of renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:509–17.

    Article  CAS  PubMed  Google Scholar 

  126. Petersson J, Carlström M, Schreiber O, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46:1068–75.

    Article  CAS  PubMed  Google Scholar 

  127. Carlström M, Persson AE, Larsson E, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89:574–85.

    Article  PubMed  CAS  Google Scholar 

  128. Montenegro MF, Pinheiro LC, Amaral JH, Ferreira GC, Portella RL, Tanus-Santos JE. Vascular xanthine oxidoreductase contributes to the antihypertensive effects of sodium nitrite in L-NAME hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:591–8.

    Article  CAS  PubMed  Google Scholar 

  129. Tsuchiya K, Kanematsu Y, Yoshizumi M, et al. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol. 2005;288:H2163–70.

    Article  CAS  PubMed  Google Scholar 

  130. Carlstrom M, Liu M, Yang T, et al. Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxid Redox Signal. 2015;23:295–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Carlström M, Larsen FJ, Nyström T, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A. 2010;107:17716–20.

    Article  PubMed  PubMed Central  Google Scholar 

  132. DeVan AE, Johnson LC, Brooks FA, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol (1985). 2016;120:416–25.

    Google Scholar 

  133. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326:1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kapil V, Milsom AB, Okorie M, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56:274–81.

    Article  CAS  PubMed  Google Scholar 

  135. Ashor AW, Jajja A, Sutyarjoko A, et al. Effects of beetroot juice supplementation on microvascular blood flow in older overweight and obese subjects: a pilot randomised controlled study [letter]. J Hum Hypertens. 2015;29(8):511–3.

    Article  CAS  PubMed  Google Scholar 

  136. Ashworth A, Mitchell K, Blackwell JR, Vanhatalo A, Jones AM. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr. 2015;18:2669–78.

    Article  PubMed  Google Scholar 

  137. Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide. 2012;26:197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.

    Article  CAS  PubMed  Google Scholar 

  139. Bailey SJ, Fulford J, Vanhatalo A, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135–48.

    Article  CAS  PubMed  Google Scholar 

  140. Bond VJ, Curry BH, Adams RG, Asadi MS, Millis RM, Haddad GE. Effects of dietary nitrates on systemic and cerebrovascular hemodynamics. Cardiol Res Pract. 2013;2013:435629.

    PubMed  PubMed Central  Google Scholar 

  141. Bond VJ, Curry BH, Adams RG, Millis RM, Haddad GE. Cardiorespiratory function associated with dietary nitrate supplementation. Appl Physiol Nutr Metab. 2014;39:168–72.

    Article  CAS  PubMed  Google Scholar 

  142. Bondonno CP, Yang X, Croft KD, et al. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med. 2012;52:95–102.

    Article  CAS  PubMed  Google Scholar 

  143. Bondonno CP, Liu AH, Croft KD, et al. Short-term effects of nitrate-rich green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure. Free Radic Biol Med. 2014;77:353–62.

    Article  CAS  PubMed  Google Scholar 

  144. Bourdillon N, Fan JL, Uva B, Muller H, Meyer P, Kayser B. Effect of oral nitrate supplementation on pulmonary hemodynamics during exercise and time trial performance in normoxia and hypoxia: a randomized controlled trial. Front Physiol. 2015;6:288.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cermak NM, Gibala MJ, van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22:64–71.

    Article  CAS  PubMed  Google Scholar 

  146. Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J. 2012;11:106.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab. 2016;41:421–9.

    Article  CAS  PubMed  Google Scholar 

  148. Jajja A, Sutyarjoko A, Lara J, et al. Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 2014;34:868–75.

    Article  CAS  PubMed  Google Scholar 

  149. Jonvik KL, Nyakayiru J, Pinckaers PJ, Senden JM, van Loon LJ, Verdijk LB. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J Nutr. 2016;146(5):986–93.

    Google Scholar 

  150. Jovanovski E, Bosco L, Khan K, et al. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: a randomized, controlled trial in healthy adults. Clin Nutr Res. 2015;4:160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kelly J, Fulford J, Vanhatalo A, et al. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013;304:R73–83.

    Article  CAS  PubMed  Google Scholar 

  152. Lansley KE, Winyard PG, Bailey SJ, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43:1125–31.

    Article  CAS  PubMed  Google Scholar 

  153. Lansley KE, Winyard PG, Fulford J, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110:591–600.

    Article  CAS  PubMed  Google Scholar 

  154. Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355:2792–3.

    Article  CAS  PubMed  Google Scholar 

  155. Lee JS, Stebbins CL, Jung E, et al. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309:R459–66.

    Article  CAS  PubMed  Google Scholar 

  156. Liu AH, Bondonno CP, Croft KD, et al. Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers. Nitric Oxide. 2013;35:123–30.

    Article  CAS  PubMed  Google Scholar 

  157. Rammos C, Hendgen-Cotta UB, Sobierajski J, Bernard A, Kelm M, Rassaf T. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk [letter]. J Am Coll Cardiol. 2014;63(15):1584–5.

    Article  CAS  PubMed  Google Scholar 

  158. Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22:136–40.

    Article  CAS  PubMed  Google Scholar 

  159. Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1121–31.

    Article  CAS  PubMed  Google Scholar 

  160. Wylie LJ, Kelly J, Bailey SJ, et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol (1985). 2013;115:325–36.

    Google Scholar 

  161. Hobbs AJ, Stasch J-P. Soluble guanylate cyclase: allosteric activation and redox regulation. In: Ignarro L, editor. Nitric oxide: biology and pathobiology. New York: Academic; 2010. p. 301–26.

    Google Scholar 

  162. Batchelor AM, Bartus K, Reynell C, et al. Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc Natl Acad Sci U S A. 2010;107:22060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ghosh SM, Kapil V, Fuentes-Calvo I, et al. Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension. 2013;61:1091–102.

    Article  CAS  PubMed  Google Scholar 

  164. Lipicky RJ. Trough: peak ratio: the rationale behind the United States Food and Drug Administration recommendations. J Hypertens Suppl. 1994;12:S17–9.

    Article  CAS  PubMed  Google Scholar 

  165. Meredith PA. New FDA, guidelines on the treatment of hypertension: comparison of different therapeutic classes according to trough/peak blood pressure responses. Arch Mal Coeur Vaiss. 1994;87:1423–9.

    CAS  PubMed  Google Scholar 

  166. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  167. Brandes RP, Kim D, Schmitz-Winnenthal FH, et al. Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase. Hypertension. 2000;35:231–6.

    Article  CAS  PubMed  Google Scholar 

  168. Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65:320–7.

    Article  CAS  PubMed  Google Scholar 

  169. Gilchrist M, Winyard PG, Fulford J, Anning C, Shore AC, Benjamin N. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo. Nitric Oxide. 2014;40:67–74.

    Article  CAS  PubMed  Google Scholar 

  170. Bondonno CP, Liu AH, Croft KD, et al. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102:368–75.

    Article  CAS  PubMed  Google Scholar 

  171. Gilchrist M, Winyard P, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97.

    Article  CAS  PubMed  Google Scholar 

  172. Mohler ER, Hiatt WR, Gornik HL, et al. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: safety, walking distance and endothelial function. Vasc Med. 2014;19:9–17.

    Article  CAS  PubMed  Google Scholar 

  173. Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol. 2011;110:1582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Curtis KJ, O’Brien KA, Tanner RJ, et al. Acute dietary nitrate supplementation and exercise performance in COPD: a double-blind, placebo-controlled. Randomised controlled pilot study. PLoS One. 2015;10:e0144504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Berry MJ, Justus NW, Hauser JI, et al. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide. 2015;48:22–30.

    Article  CAS  PubMed  Google Scholar 

  176. Kerley CP, Cahill K, Bolger K, et al. Dietary nitrate supplementation in COPD: an acute, double-blind, randomized, placebo-controlled, crossover trial. Nitric Oxide. 2015;44:105–11.

    Article  CAS  PubMed  Google Scholar 

  177. Leong P, Basham JE, Yong T, et al. A double blind randomized placebo control crossover trial on the effect of dietary nitrate supplementation on exercise tolerance in stable moderate chronic obstructive pulmonary disease. BMC Pulm Med. 2015;15:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Shepherd AI, Wilkerson DP, Dobson L, et al. The effect of dietary nitrate supplementation on the oxygen cost of cycling, walking performance and resting blood pressure in individuals with chronic obstructive pulmonary disease: a double blind placebo controlled, randomised control trial. Nitric Oxide. 2015;48:31–7.

    Article  CAS  PubMed  Google Scholar 

  179. Eggebeen J, Kim-Shapiro DB, Haykowsky M, et al. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2016;4(6):428–37.

    Google Scholar 

  180. Zamani P, Rawat D, Shiva-Kumar P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131:371–80; discussion 380.

    Article  CAS  PubMed  Google Scholar 

  181. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  182. Laurent S, Cockcroft JR, Van Bortel LM, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  183. Safar ME. Arterial aging—hemodynamic changes and therapeutic options. Nat Rev Cardiol. 2010;7:442–9.

    Article  PubMed  Google Scholar 

  184. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  185. Kaess BM, Rong J, Larson MG, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zheng X, Jin C, Liu Y, et al. Arterial stiffness as a predictor of clinical hypertension. J Clin Hypertens (Greenwich). 2015;17:582–91.

    Article  Google Scholar 

  187. Pettersen KH, Bugenhagen SM, Nauman J, Beard DA, Omholt SW. Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol. 2014;10, e1003634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Bellien J, Favre J, Iacob M, et al. Arterial stiffness is regulated by nitric oxide and endothelium-derived hyperpolarizing factor during changes in blood flow in humans. Hypertension. 2010;55:674–80.

    Article  CAS  PubMed  Google Scholar 

  189. Schmitt M, Avolio A, Qasem A, et al. Basal NO locally modulates human iliac artery function in vivo. Hypertension. 2005;46:227–31.

    Article  CAS  PubMed  Google Scholar 

  190. Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation. 2002;105:213–7.

    Article  CAS  PubMed  Google Scholar 

  191. Fleenor BS, Sindler AL, Eng JS, Nair DP, Dodson RB, Seals DR. Sodium nitrite de-stiffening of large elastic arteries with aging: role of normalization of advanced glycation end-products. Exp Geront. 2012;47:588–94.

    Article  CAS  Google Scholar 

  192. Sindler AL, Fleenor BS, Calvert JW, et al. Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell. 2011;10:429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lauer T, Preik M, Rassaf T, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci U S A. 2001;98:12814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kleinbongard P, Dejam A, Lauer T, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35:790–6.

    Article  CAS  PubMed  Google Scholar 

  195. Kleinbongard P, Dejam A, Lauer T, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40:295–302.

    Article  CAS  PubMed  Google Scholar 

  196. Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983;43:1921–5.

    CAS  PubMed  Google Scholar 

  197. Ishiwata H, Tanimura A, Ishidate M. Studies on in vivo formation of nitroso compounds (V). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1975;16:234–9.

    Article  CAS  Google Scholar 

  198. Gladwin MT, Shelhamer JH, Schechter AN, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A. 2000;97:11482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kapil V, Haydar SMA, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2013;55:93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bondonno CP, Liu AH, Croft KD, et al. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am J Hypertens. 2015;28:572–5.

    Article  PubMed  Google Scholar 

  201. Woessner M, Smoliga JM, Tarzia B, Stabler T, Van Bruggen M, Allen JD. A stepwise reduction in plasma and salivary nitrite with increasing strengths of mouthwash following a dietary nitrate load. Nitric Oxide. 2016;54:1–7.

    Article  CAS  PubMed  Google Scholar 

  202. McDonagh ST, Wylie LJ, Winyard PG, Vanhatalo A, Jones AM. The effects of chronic nitrate supplementation and the use of strong and weak antibacterial agents on plasma nitrite concentration and exercise blood pressure. Int J Sports Med. 2015;36:1177–85.

    Article  CAS  PubMed  Google Scholar 

  203. Harada M, Ishiwata H, Nakamura Y, Tanimura A, Ishidate M. Studies on in vivo formation of nitroso compounds. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1974;15:206–7.

    Article  CAS  Google Scholar 

  204. Ishiwata H. Studies on in vivo formation of nitroso compounds (VII). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1976;17:369–73.

    Article  CAS  Google Scholar 

  205. Ishiwata H, Boriboon P, Nakamura Y, Harada M, Tanimura A, Ishidate M. Studies on in vivo formation of nitroso compounds (II). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1975;16:19–24.

    Article  CAS  Google Scholar 

  206. Ishiwata H. Studies on in vivo formation of nitroso compounds (VIII). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1976;17:423–7.

    Article  CAS  Google Scholar 

  207. Ishiwata H, Tanimura A, Ishidate M. Studies on in vivo formation of nitroso compounds (III). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1975;16:89–92.

    Article  CAS  Google Scholar 

  208. Ishiwata H, Boriboon P, Harada M, Tanimura A, Ishidate M. Studies on in vivo formation of nitroso compounds (IV). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1975;16:93–8.

    Article  CAS  Google Scholar 

  209. Tannenbaum SR, Correa P. Nitrate and gastric cancer risks. Nature. 1985;317:675–6.

    Article  CAS  PubMed  Google Scholar 

  210. Eisenbrand G, Spiegelhalder B, Preussmann R. Nitrate and nitrite in saliva. Oncology. 1980;37:227–31.

    Article  CAS  PubMed  Google Scholar 

  211. Tannenbaum SR, Sinskey AJ, Weisman M, Bishop W. Nitrite in human saliva. Its possible relationship to nitrosamine formation. J Natl Cancer Inst. 1974;53:79–84.

    Article  CAS  PubMed  Google Scholar 

  212. Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976;14:545–8.

    Article  CAS  PubMed  Google Scholar 

  213. Desvarieux M, Demmer RT, Rundek T, et al. Relationship between periodontal disease, tooth loss, and carotid artery plaque: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Stroke. 2003;34:2120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Desvarieux M, Demmer RT, Rundek T, et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation. 2005;111:576–82.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Desvarieux M, Demmer RT, Jacobs DR, et al. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J Hypertens. 2010;28:1413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Elmore JG, Horwitz RI. Oral cancer and mouthwash use: evaluation of the epidemiologic evidence. Otolaryngol Head Neck Surg. 1995;113:253–61.

    Article  CAS  PubMed  Google Scholar 

  217. Fedorowicz Z, Aljufairi H, Nasser M, Outhouse TL, Pedrazzi V. Mouthrinses for the treatment of halitosis. Cochrane Database Syst Rev. 2008;(4):CD006701.

    Google Scholar 

  218. Chadwick B, White D, Lader D, Pitts N. Preventative behaviour and risks to oral health. In: O’Sullivan I, editor. Adult dental health survey 2009. Leeds: The Health and Social Care Information Centre; 2011. p. 1–44.

    Google Scholar 

  219. van Velzen AG, Sips AJ, Schothorst RC, Lambers AC, Meulenbelt J. The oral bioavailability of nitrate from nitrate-rich vegetables in humans. Toxicol Lett. 2008;181:177–81.

    Article  PubMed  CAS  Google Scholar 

  220. Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190:48–53.

    Article  CAS  PubMed  Google Scholar 

  221. Iskedjian M, Einarson TR, MacKeigan LD, et al. Relationship between daily dose frequency and adherence to antihypertensive pharmacotherapy: evidence from a meta-analysis. Clin Ther. 2002;24:302–16.

    Article  PubMed  Google Scholar 

  222. Schroeder K, Fahey T, Ebrahim S. How can we improve adherence to blood pressure-lowering medication in ambulatory care? Systematic review of randomized controlled trials. Arch Intern Med. 2004;164:722–32.

    Article  PubMed  Google Scholar 

  223. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Ther. 2001;23:1296–310.

    Article  CAS  PubMed  Google Scholar 

  224. Martinoia E, Maeshima M, Neuhaus HE. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007;58:83–102.

    Article  CAS  PubMed  Google Scholar 

  225. Nunez de Gonzalez MT, Osburn WN, Hardin MD, et al. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail. J Food Sci. 2015;80:C942–9.

    Google Scholar 

  226. Food Standards Agency. 2004 UK monitoring programme for nitrate in lettuce and spinach [online]. 2004.

    Google Scholar 

  227. Crandall Jr LA, Leake CD, Loevenhart AS. Acquired tolerance to and cross tolerance between the nitrous and nitric acid esters and sodium nitrite in man. J Pharmacol Exp Ther. 1931;41:103–19.

    CAS  Google Scholar 

  228. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90:1–10.

    Article  CAS  PubMed  Google Scholar 

  229. Food and Agriculture Organization of the United Nations/World Health Organization. Nitrate (and potential endogenous formation of N-nitroso compounds). Geneva: World Health Organization; 2003.

    Google Scholar 

  230. Beck EG. Toxic effects from bismuth subnitrate with reports of cases to date. JAMA. 1909;LII:14–8.

    Google Scholar 

  231. U.S. Public Health Service. Public health service drinking water standards. Washington: United States Government Printing Office; 1962.

    Google Scholar 

  232. Ash-Bernal R, Wise R, Wright SM. Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore). 2004;83:265–73.

    Google Scholar 

  233. Pluta RM, Oldfield EH, Bakhtian KD, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011;6, e14504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Magee PN, Barnes JM. The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer. 1956;10:114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Magee PN, Barnes JM. Carcinogenic nitroso compounds. Adv Cancer Res. 1967;10:163–246.

    Article  CAS  PubMed  Google Scholar 

  236. Fine DH, Ross R, Rounbehler DP, Silvergleid A, Song L. Formation in vivo of volatile N-nitrosamines in man after ingestion of cooked bacon and spinach. Nature. 1977;265:753–5.

    Article  CAS  PubMed  Google Scholar 

  237. Sen NP, Smith DC, Schwinghamer L. Formation of N-nitrosamines from secondary amines and nitrite in human and animal gastric juice. Food Cosmet Toxicol. 1969;7:301–7.

    Article  CAS  PubMed  Google Scholar 

  238. Bogovski P, Bogovski S. Animal species in which N-nitroso compounds induce cancer. Int J Cancer. 1981;27:471–4.

    Article  CAS  PubMed  Google Scholar 

  239. National Toxicology Program. NTP technical report on toxicology and carcinogenesis studies of sodium nitrite in F344/N rats and B6C3F1 mice (drinking water studies). Durham: National Institutes of Health; 2001.

    Google Scholar 

  240. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington: AICR; 2007.

    Google Scholar 

  241. Boffetta P, Couto E, Wichmann J, et al. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2010;102:529–37.

    Article  CAS  PubMed  Google Scholar 

  242. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116:188–95.

    Article  CAS  PubMed  Google Scholar 

  243. Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295:58–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kapil MD MRCP PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kapil, V. (2017). Nitrite and Nitrate as a Treatment for Hypertension. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46189-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46189-2_17

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46187-8

  • Online ISBN: 978-3-319-46189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics