Skip to main content

Nitrite and Nitrate in Ischemia–Reperfusion Injury

  • Chapter
  • First Online:
Nitrite and Nitrate in Human Health and Disease

Part of the book series: Nutrition and Health ((NH))

  • 1412 Accesses

Abstract

Ischemia–reperfusion injury occurs when blood supply is restored to a tissue or organ that was previously shut off from blood supply due to clots, trauma, or organ transplantation just to name a few. Protecting tissues and organs from this type of injury is critical for resulting organ function and patient outcomes. Both nitrite and nitrate have been found to be extremely protective in experimental animals in the setting of ischemia–reperfusion injury. Mechanistically it is even well defined as to how these two naturally occurring anions confer the level of protection. This chapter will highlight the effects of nitrite and nitrate on ischemia–reperfusion injury in a number of models and also illustrate the most recent clinical data on how this has translated into human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(8):156–67.

    Article  CAS  PubMed  Google Scholar 

  2. Bodo R. The effect of the “heart-tonics” and other drugs upon the heart-tone and coronary circulation. J Physiol. 1928;64(4):365–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nossaman VE, Nossaman BD, Kadowitz PJ. Nitrates and nitrites in the treatment of ischemic cardiac disease. Cardiol Rev. 2010;18(4):190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fledelius HC. Irreversible blindness after amyl nitrite inhalation. Acta Ophthalmol Scand. 1999;77(6):719–21.

    Article  CAS  PubMed  Google Scholar 

  5. Haverkos HW, Dougherty J. Health hazards of nitrite inhalants. Am J Med. 1988;84(3 Pt 1):479–82.

    Article  CAS  PubMed  Google Scholar 

  6. Gracia R, Shepherd G. Cyanide poisoning and its treatment. Pharmacotherapy. 2004;24(10):1358–65.

    Article  CAS  PubMed  Google Scholar 

  7. Wu LT, Schlenger WE, Ringwalt CL. Use of nitrite inhalants (“poppers”) among American youth. J Adolesc Health. 2005;37(1):52–60.

    Article  PubMed  Google Scholar 

  8. Dezfulian C, Raat N, Shiva S, Gladwin MT. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc Res. 2007;75(2):327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, et al. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283(49):33927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen FB. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim Biophys Acta. 2009;1787(7):841–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lefer DJ. Emerging role of nitrite in myocardial protection. Arch Pharm Res. 2009;32(8):1127–38.

    Article  CAS  PubMed  Google Scholar 

  13. Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.

    Article  CAS  PubMed  Google Scholar 

  14. Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, et al. Stomach NO synthesis. Nature. 1994;368(6471):502.

    Article  CAS  PubMed  Google Scholar 

  15. Sobko T, Reinders CI, Jansson E, Norin E, Midtvedt T, Lundberg JO. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide. 2005;13(4):272–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kleinbongard P, Dejam A, Lauer T, Jax T, Kerber S, Gharini P, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  18. Bryan NS. Cardioprotective actions of nitrite therapy and dietary considerations. Front Biosci. 2009;14:4793–808.

    Article  CAS  Google Scholar 

  19. Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med. 2008;45(4):468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosby K, Partovi KS, Crawford JH, Patel RK, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    Article  CAS  PubMed  Google Scholar 

  21. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008;105(29):10256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen MG, Dewilde S, Fago A. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem. 2008;102(9):1777–82.

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem. 2004;279:16939–46.

    Article  CAS  PubMed  Google Scholar 

  24. Basu S, Azarova NA, Font MD, King SB, Hogg N, Gladwin MT, et al. Nitrite reductase activity of cytochrome c. J Biol Chem. 2008;283(47):32590–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daiber A, Munzel T. Nitrate reductase activity of mitochondrial aldehyde dehydrogenase (ALDH-2) as a redox sensor for cardiovascular oxidative stress. Methods Mol Biol. 2010;594:43–55.

    Article  CAS  PubMed  Google Scholar 

  26. Golwala NH, Hodenette C, Murthy SN, Nossaman BD, Kadowitz PJ. Vascular responses to nitrite are mediated by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase in the rat. Can J Physiol Pharmacol. 2009;87(12):1095–101.

    Article  CAS  PubMed  Google Scholar 

  27. Weitzberg E, Lundberg JO. Nonenzymatic nitric oxide production in humans. Nitric Oxide. 1998;2(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1(8):804–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tiravanti E, Samouilov A, Zweier JL. Nitrosyl-heme complexes are formed in the ischemic heart: evidence of nitrite-derived nitric oxide formation, storage, and signaling in post-ischemic tissues. J Biol Chem. 2004;279(12):11065–73.

    Article  CAS  PubMed  Google Scholar 

  30. Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol. 2005;1(5):290–7.

    Article  CAS  PubMed  Google Scholar 

  31. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004;101(12):4308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalsgaard T, Simonsen U, Fago A. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities. Am J Physiol Heart Circ Physiol. 2007;292(6):H3072–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun. 2010;396(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  34. Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006;291(5):H2026–35.

    Article  CAS  PubMed  Google Scholar 

  35. Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fish JE, Yan MS, Matouk CC, St Bernard R, Ho JJ, Gavryushova A, et al. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem. 2010;285(2):810–26.

    Article  CAS  PubMed  Google Scholar 

  37. McQuillan LP, Leung GK, Marsden PA, Kostyk SK, Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol. 1994;267(5 Pt 2):H1921–7.

    CAS  PubMed  Google Scholar 

  38. Tai SC, Robb GB, Marsden PA. Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler Thromb Vasc Biol. 2004;24(3):405–12.

    Article  CAS  PubMed  Google Scholar 

  39. Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res. 2008;103(9):957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76(5):1713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res. 1996;32(4):743–51.

    Article  CAS  PubMed  Google Scholar 

  42. Calvert JW, Lefer DJ. Myocardial protection by nitrite. Cardiovasc Res. 2009;83(2):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 2010;1802(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  44. Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol. 2007;292(1):C137–47.

    Article  CAS  PubMed  Google Scholar 

  45. Sack MN. Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res. 2006;72(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kim JS, He L, Qian T, Lemasters JJ. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003;3(6):527–35.

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Rivas GJ, Torre-Amione G. Abnormal mitochondrial function during ischemia reperfusion provides targets for pharmacological therapy. Methodist Debakey Cardiovasc J. 2009;5(3):2–7.

    Article  PubMed  Google Scholar 

  48. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356:295–8.

    Article  CAS  PubMed  Google Scholar 

  50. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994;345:50–4.

    Article  CAS  PubMed  Google Scholar 

  51. Brookes P, Darley-Usmar VM. Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med. 2002;32(4):370–4.

    Article  CAS  PubMed  Google Scholar 

  52. Raat NJ, Shiva S, Gladwin MT. Effects of nitrite on modulating ROS generation following ischemia and reperfusion. Adv Drug Deliv Rev. 2009;61(4):339–50.

    Article  CAS  PubMed  Google Scholar 

  53. Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM, et al. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem. 2000;275(27):20474–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR. Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem. 1998;273(47):31437–41.

    Article  CAS  PubMed  Google Scholar 

  55. Shiva S, Sack MN, Greer JJ, Duranski MR, Ringwood LA, Burwell L, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007;204(9):2089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  57. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17(3):192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi XL, Nguyen TL, Andries L, Sys SU, Rouleau JL. Vascular endothelial dysfunction contributes to myocardial depression in ischemia-reperfusion in the rat. Can J Physiol Pharmacol. 1998;76(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  59. Lauer T, Heiss C, Balzer J, Kehmeier E, Mangold S, Leyendecker T, et al. Age-dependent endothelial dysfunction is associated with failure to increase plasma nitrite in response to exercise. Basic Res Cardiol. 2008;103(3):291–7.

    Article  CAS  PubMed  Google Scholar 

  60. Rassaf T, Heiss C, Hendgen-Cotta U, Balzer J, Matern S, Kleinbongard P, et al. Plasma nitrite reserve and endothelial function in the human forearm circulation. Free Radic Biol Med. 2006;41(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  61. Rassaf T, Heiss C, Mangold S, Leyendecker T, Kehmeier ES, Kelm M, et al. Vascular formation of nitrite after exercise is abolished in patients with cardiovascular risk factors and coronary artery disease. J Am Coll Cardiol. 2010;55(14):1502–3.

    Article  CAS  PubMed  Google Scholar 

  62. Stokes KY, Dugas TR, Tang Y, Garg H, Guidry E, Bryan NS. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296(5):H1281–8.

    Article  CAS  PubMed  Google Scholar 

  63. Jones SP, Greer JJ, Kakkar AK, Ware PD, Turnage RH, Hicks M, et al. Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2004;286(1):H276–82.

    Article  CAS  PubMed  Google Scholar 

  64. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115(5):1232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perlman DH, Bauer SM, Ashrafian H, Bryan NS, Garcia-Saura MF, Lim CC, et al. Mechanistic insights into nitrite-induced cardioprotection using an integrated metabonomic/proteomic approach. Circ Res. 2009;104(6):796–804.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez FM, Shiva S, Vincent PS, Ringwood LA, Hsu LY, Hon YY, et al. Nitrite anion provides potent cytoprotective and antiapoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation. 2008;117(23):2986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bhushan S, Kondo K, Polhemus DJ, Otsuka H, Nicholson CK, Tao YX, et al. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ Res. 2014;114(8):1281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baker JE, Su J, Fu X, Hsu A, Gross GJ, Tweddell JS, et al. Nitrite confers protection against myocardial infarction: role of xanthine oxidoreductase, NADPH oxidase and K(ATP) channels. J Mol Cell Cardiol. 2007;43(4):437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101:13683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Binks A, Nolan JP. Post-cardiac arrest syndrome. Minerva Anestesiol. 2010;76(5):362–8.

    CAS  PubMed  Google Scholar 

  71. Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, et al. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation. 2009;120(10):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pluta RM, Rak R, Wink DA, Woodward JJ, Khaldi A, Oldfield EH, et al. Effects of nitric oxide on reactive oxygen species production and infarction size after brain reperfusion injury. Neurosurgery. 2001;48(4):884–92; discussion 92–3.

    CAS  PubMed  Google Scholar 

  73. Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke. 2006;37(11):2744–50.

    Article  CAS  PubMed  Google Scholar 

  74. Jung KH, Chu K, Lee ST, Park HK, Kim JH, Kang KM, et al. Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition. Biochem Biophys Res Commun. 2009;378(3):507–12.

    Article  CAS  PubMed  Google Scholar 

  75. Calvert JW, Lefer DJ. Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide. 2010;22(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  76. Schatlo B, Henning EC, Pluta RM, Latour LL, Golpayegani N, Merrill MJ, et al. Nitrite does not provide additional protection to thrombolysis in a rat model of stroke with delayed reperfusion. J Cereb Blood Flow Metab. 2008;28(3):482–9.

    Article  CAS  PubMed  Google Scholar 

  77. Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293(12):1477–84.

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Criado FJ, Rodriguez-Barca P, Garcia-Cenador MB, Rivas-Elena JV, Grande MT, Lopez-Marcos JF, et al. Protective effect of new nitrosothiols on the early inflammatory response to kidney ischemia/reperfusion and transplantation in rats. J Interferon Cytokine Res. 2009;29(8):441–50.

    Article  CAS  PubMed  Google Scholar 

  80. Varon J. Diagnosis and management of labile blood pressure during acute cerebrovascular accidents and other hypertensive crises. Am J Emerg Med. 2007;25(8):949–59.

    Article  PubMed  Google Scholar 

  81. Rifkind JM, Nagababu E, Barbiro-Michaely E, Ramasamy S, Pluta RM, Mayevsky A. Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: a role for red cell NO. Nitric Oxide. 2007;16(4):448–56.

    Article  CAS  PubMed  Google Scholar 

  82. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003;18(8):891–902.

    Article  CAS  PubMed  Google Scholar 

  83. Abe Y, Hines IN, Zibari G, Pavlick K, Gray L, Kitagawa Y, et al. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med. 2009;46(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  84. Abe Y, Hines I, Zibari G, Grisham MB. Hepatocellular protection by nitric oxide or nitrite in ischemia and reperfusion injury. Arch Biochem Biophys. 2009;484(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  85. Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology. 2004;39(6):1533–43.

    Article  CAS  PubMed  Google Scholar 

  86. Lu P, Liu F, Yao Z, Wang CY, Chen DD, Tian Y, et al. Nitrite-derived nitric oxide by xanthine oxidoreductase protects the liver against ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int. 2005;4(3):350–5.

    CAS  PubMed  Google Scholar 

  87. Raat NJ, Noguchi AC, Liu VB, Raghavachari N, Liu D, Xu X, et al. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response. Free Radic Biol Med. 2009;47(5):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, Lozano-Sanchez FS, et al. Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation. 1998;66(8):982–90.

    Article  CAS  PubMed  Google Scholar 

  89. Jeong GY, Chung KY, Lee WJ, Kim YS, Sung SH. The effect of a nitric oxide donor on endogenous endothelin-1 expression in renal ischemia/reperfusion injury. Transplant Proc. 2004;36(7):1943–5.

    Article  CAS  PubMed  Google Scholar 

  90. Martinez-Mier G, Toledo-Pereyra LH, Bussell S, Gauvin J, Vercruysse G, Arab A, et al. Nitric oxide diminishes apoptosis and p53 gene expression after renal ischemia and reperfusion injury. Transplantation. 2000;70(10):1431–7.

    Article  CAS  PubMed  Google Scholar 

  91. Kucuk HF, Kaptanoglu L, Ozalp F, Kurt N, Bingul S, Torlak OA, et al. Role of glyceryl trinitrate, a nitric oxide donor, in the renal ischemia-reperfusion injury of rats. Eur Surg Res. 2006;38(5):431–7.

    Article  CAS  PubMed  Google Scholar 

  92. Okamoto M, Tsuchiya K, Kanematsu Y, Izawa Y, Yoshizumi M, Kagawa S, et al. Nitrite-derived nitric oxide formation following ischemia-reperfusion injury in kidney. Am J Physiol Renal Physiol. 2005;288(1):F182–7.

    Article  CAS  PubMed  Google Scholar 

  93. Milsom AB, Patel NS, Mazzon E, Tripatara P, Storey A, Mota-Filipe H, et al. Role for endothelial nitric oxide synthase in nitrite-induced protection against renal ischemia-reperfusion injury in mice. Nitric Oxide. 2010;22(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  94. Tripatara P, Patel NS, Webb A, Rathod K, Lecomte FM, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18(2):570–80.

    Article  CAS  PubMed  Google Scholar 

  95. Basireddy M, Isbell TS, Teng X, Patel RP, Agarwal A. Effects of sodium nitrite on ischemia-reperfusion injury in the rat kidney. Am J Physiol Renal Physiol. 2006;290(4):F779–86.

    Article  CAS  PubMed  Google Scholar 

  96. Nakajima A, Ueda K, Takaoka M, Kurata H, Takayama J, Ohkita M, et al. Effects of pre- and post-ischemic treatments with FK409, a nitric oxide donor, on ischemia/reperfusion-induced renal injury and endothelin-1 production in rats. Biol Pharm Bull. 2006;29(3):577–9.

    Article  CAS  PubMed  Google Scholar 

  97. Tsuchiya K, Tomita S, Ishizawa K, Abe S, Ikeda Y, Kihira Y, et al. Dietary nitrite ameliorates renal injury in L-NAME-induced hypertensive rats. Nitric Oxide. 2010;22(2):98–103.

    Article  CAS  PubMed  Google Scholar 

  98. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  99. Milkowski A, Garg HK, Coughlin JR, Bryan NS. Nutritional epidemiology in the context of nitric oxide biology: a risk-benefit evaluation for dietary nitrite and nitrate. Nitric Oxide. 2010;22(2):110–9.

    Article  CAS  PubMed  Google Scholar 

  100. Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado R, et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004;10:1122–7.

    Article  CAS  PubMed  Google Scholar 

  101. Wu X, Du L, Xu X, Tan L, Li R. Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice. J Pharmacol Sci. 2010;113(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  102. Egemnazarov B, Schermuly RT, Dahal BK, Elliott GT, Hoglen NC, Surber MW, et al. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction. Respir Res. 2010;11:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation. 2010;121(1):98–109.

    Article  CAS  PubMed  Google Scholar 

  104. Ingram TE, Pinder AG, Bailey DM, Fraser AG, James PE. Low-dose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite. Am J Physiol Heart Circ Physiol. 2010;298(2):H331–9.

    Article  CAS  PubMed  Google Scholar 

  105. Casey DB, Badejo Jr AM, Dhaliwal JS, Murthy SN, Hyman AL, Nossaman BD, et al. Pulmonary vasodilator responses to sodium nitrite are mediated by an allopurinol-sensitive mechanism in the rat. Am J Physiol Heart Circ Physiol. 2009;296(2):H524–33.

    Article  CAS  PubMed  Google Scholar 

  106. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2007;109(7):3088–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Minneci PC, Deans KJ, Shiva S, Zhi H, Banks SM, Kern S, et al. Nitrite reductase activity of hemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma hemoglobin produced during hemolysis. Am J Physiol Heart Circ Physiol. 2008;295(2):H743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dias-Junior CA, Gladwin MT, Tanus-Santos JE. Low-dose intravenous nitrite improves hemodynamics in a canine model of acute pulmonary thromboembolism. Free Radic Biol Med. 2006;41(12):1764–70.

    Article  CAS  PubMed  Google Scholar 

  109. Berger MM, Dehnert C, Bailey DM, Luks AM, Menold E, Castell C, et al. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt Med Biol. 2009;10(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  110. Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A. 2007;104(45):17593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Casey DP, Beck DT, Braith RW. Systemic plasma levels of nitrite/nitrate (NOx) reflect brachial flow-mediated dilation responses in young men and women. Clin Exp Pharmacol Physiol. 2007;34(12):1291–3.

    Article  CAS  PubMed  Google Scholar 

  112. Allen JD, Miller EM, Schwark E, Robbins JL, Duscha BD, Annex BH. Plasma nitrite response and arterial reactivity differentiate vascular health and performance. Nitric Oxide. 2009;20(4):231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Casey DP, Nichols WW, Conti CR, Braith RW. Relationship between endogenous concentrations of vasoactive substances and measures of peripheral vasodilator function in patients with coronary artery disease. Clin Exp Pharmacol Physiol. 2010;37(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  114. Gladwin MT. Evidence mounts that nitrite contributes to hypoxic vasodilation in the human circulation. Circulation. 2008;117(5):594–7.

    Article  PubMed  Google Scholar 

  115. Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117(5):670–7.

    Article  CAS  PubMed  Google Scholar 

  116. Mendoza MG, Robles HV, Romo E, Rios A, Escalante B. Nitric oxide-dependent neovascularization role in the lower extremity disease. Curr Pharm Des. 2007;13(35):3591–6.

    Article  CAS  PubMed  Google Scholar 

  117. Kumar D, Branch BG, Pattillo CB, Hood J, Thoma S, Simpson S, et al. Chronic sodium nitrite therapy augments ischemia-induced angiogenesis and arteriogenesis. Proc Natl Acad Sci U S A. 2008;105(21):7540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Polhemus DJ, Bradley JM, Islam KN, Brewster LP, Calvert JW, Tao YX, et al. Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome. Am J Physiol Heart Circ Physiol. 2015;309(1):H82–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bradley JM, Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Tao YX, et al. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease. Am J Physiol Heart Circ Physiol. 2015;309(2):H305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol. 2007;34(9):926–32.

    Article  CAS  PubMed  Google Scholar 

  121. Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med. 2008;44(8):1506–28.

    Article  CAS  PubMed  Google Scholar 

  122. Lopez BL, Barnett J, Ballas SK, Christopher TA, Davis-Moon L, Ma X. Nitric oxide metabolite levels in acute vaso-occlusive sickle-cell crisis. Acad Emerg Med. 1996;3(12):1098–103.

    Article  CAS  PubMed  Google Scholar 

  123. Mack AK, McGowan Ii VR, Tremonti CK, Ackah D, Barnett C, Machado RF, et al. Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol. 2008;142(6):971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Siddiqi N, Neil C, Bruce M, MacLennan G, Cotton S, Papadopoulou S, et al. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J. 2014;35(19):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ingram TE, Fraser AG, Bleasdale RA, Ellins EA, Margulescu AD, Halcox JP, et al. Low-dose sodium nitrite attenuates myocardial ischemia and vascular ischemia-reperfusion injury in human models. J Am Coll Cardiol. 2013;61(25):2534–41.

    Article  CAS  PubMed  Google Scholar 

  126. Jones DA, Pellaton C, Velmurugan S, Rathod KS, Andiapen M, Antoniou S, et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res. 2015;116(3):437–47.

    Article  CAS  PubMed  Google Scholar 

  127. Zand J, Lanza F, Garg HK, Bryan NS. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res. 2011;31(4):262–9.

    Article  CAS  PubMed  Google Scholar 

  128. Nagamani SC, Campeau PM, Shchelochkov OA, Premkumar MH, Guse K, Brunetti-Pierri N, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Houston M, Hays L. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):524–9.

    CAS  Google Scholar 

  130. Biswas OS, Gonzalez VR, Schwarz ER. Effects of an oral nitric oxide supplement on functional capacity and blood pressure in adults with prehypertension. J Cardiovasc Pharmacol Ther. 2014;20(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  131. Lee J, Kim HT, Solares GJ, Kim K, Ding Z, Ivy JL. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36(2):107–12.

    CAS  PubMed  Google Scholar 

  132. Lee E. Effect of nitric oxide on carotid intima media thickness: a pilot study. Altern Ther Health Med. 2016;22 Suppl 2:32–4.

    Google Scholar 

  133. Lundberg JO, Feelisch M, Bjorne H, Jansson EA, Weitzberg E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide. 2006;15(4):359–62.

    Article  CAS  PubMed  Google Scholar 

  134. van Velzen AG, Sips AJ, Schothorst RC, Lambers AC, Meulenbelt J. The oral bioavailability of nitrate from nitrate-rich vegetables in humans. Toxicol Lett. 2008;181(3):177–81.

    Article  PubMed  CAS  Google Scholar 

  135. Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  136. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136(10):2588–93.

    CAS  PubMed  Google Scholar 

  137. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.

    Article  CAS  PubMed  Google Scholar 

  138. Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care. 2008;31(7):1311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.

    Article  CAS  PubMed  Google Scholar 

  140. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  141. Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.

    Article  CAS  PubMed  Google Scholar 

  142. Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  143. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109(1):135–48.

    Article  CAS  PubMed  Google Scholar 

  145. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–55.

    Article  CAS  PubMed  Google Scholar 

  146. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf). 2007;191(1):59–66.

    Article  CAS  Google Scholar 

  147. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48(2):342–7.

    Article  CAS  PubMed  Google Scholar 

  148. Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol. 2012;50(10):3646–65.

    Article  CAS  PubMed  Google Scholar 

  149. Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res. 2015;35(8):643–54.

    Article  CAS  PubMed  Google Scholar 

  150. Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116(16):1821–31.

    Article  CAS  PubMed  Google Scholar 

  151. Antonakoudis G, Poulimenos I, Kifnidis K, Zouras C, Antonakoudis H. Blood pressure control and cardiovascular risk reduction. Hippokratia. 2007;11(3):114–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

David J. Lefer (D.J.L.) is a participant on two pending United States Patents (patents no. 60/511244 and 61/003150) on the use of sodium nitrite in cardiovascular disease. Chelsea L. Organ has no disclosures. Nathan S. Bryan is an inventor on multiple issued US patents, receives royalties from patents from the University of Texas, is a Founder and Chief Science Officer for Neogenis Labs, Advisor and Stock owner for SAJE Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lefer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lefer, D.J., Bryan, N.S., Organ, C.L. (2017). Nitrite and Nitrate in Ischemia–Reperfusion Injury. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46189-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46189-2_16

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46187-8

  • Online ISBN: 978-3-319-46189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics