Skip to main content

Dietary Flavonoids as Modulators of NO Bioavailability in Acute and Chronic Cardiovascular Diseases

  • Chapter
  • First Online:
Nitrite and Nitrate in Human Health and Disease

Part of the book series: Nutrition and Health ((NH))

  • 1335 Accesses

Abstract

Plant-derived foods contain high amounts of naturally occurring chemicals called polyphenols in addition to their nitrite and nitrate content (Heiss et al. J Am Coll Cardiol. 2010;56(3):218–24; Heiss and Kelm Eur Heart J. 2010;31(13):1554–6; Balzer et al. J Am Coll Cardiol. 2008;51:2141–9; Heiss et al. J Am Coll Cardiol. 2005;46(7):1276–83, JAMA. 2003;290(8):1030–1). These components, when present together, can exert protection in acute disease events, e.g., myocardial infarctions. Endothelial dysfunction, an early stage of coronary artery disease, has been linked to impaired endothelium-derived nitric oxide (NO) bioavailability (Heiss et al. J Am Coll Cardiol. 2006;47:573–9). There is accumulating evidence that plant-derived flavonoids can reverse endothelial dysfunction by modulation of NO bioavailability. This chapter focuses on the role of flavonoids as a dietary approach to prevent the onset and progression of chronic cardiovascular diseases, and to protect the myocardium during acute cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Wallerath T, Munzel T, Forstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide. 2002;7(3):149–64.

    Article  CAS  PubMed  Google Scholar 

  3. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–74.

    Article  CAS  PubMed  Google Scholar 

  4. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007.

    Article  CAS  PubMed  Google Scholar 

  5. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med. 2004;82(10):671–7.

    Article  PubMed  Google Scholar 

  6. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol. 2007;49(7):741–52.

    Article  CAS  PubMed  Google Scholar 

  7. Heiss C, Jahn S, Taylor M, Real WM, Angeli FS, Wong ML, et al. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol. 2010;56(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  8. Dimmeler S. Regulation of bone marrow-derived vascular progenitor cell mobilization and maintenance. Arterioscler Thromb Vasc Biol. 2010;30(6):1088–93.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer C, Heiss C, Drexhage C, Kehmeier ES, Balzer J, Muhlfeld A, et al. Hemodialysis-induced release of hemoglobin limits nitric oxide bioavailability and impairs vascular function. J Am Coll Cardiol. 2010;55(5):454–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rassaf T, Bryan NS, Kelm M, Feelisch M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med. 2002;33:1590–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rassaf T, Bryan NS, Maloney RE, Specian V, Kelm M, Kalyanaraman B, et al. NO adducts in mammalian red blood cells: too much or too little? Nat Med. 2003;9:481–2.

    Article  CAS  PubMed  Google Scholar 

  12. Rassaf T, Kleinbongard P, Preik M, Dejam A, Gharini P, Lauer T, et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical Study on the fate of NO in human blood. Circ Res. 2002;91(6):470–7.

    Article  CAS  PubMed  Google Scholar 

  13. Elrod JW, Calvert JW, Gundewar S, Bryan NS, Lefer DJ. Nitric oxide promotes distant organ protection: evidence for an endocrine role of nitric oxide. Proc Natl Acad Sci U S A. 2008;105(32):11430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38(2):291–300.

    Article  CAS  PubMed  Google Scholar 

  15. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  16. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66(6):1146–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79(2):609–34.

    CAS  PubMed  Google Scholar 

  18. Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med. 2006;3(9):499–506.

    Article  PubMed  Google Scholar 

  19. Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol. 1984;16(6):497–518.

    Article  CAS  PubMed  Google Scholar 

  20. Heusch G. Stunning–great paradigmatic, but little clinical importance. Basic Res Cardiol. 1998;93(3):164–6.

    Article  CAS  PubMed  Google Scholar 

  21. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz. 2008;33(2):88–100.

    Article  PubMed  Google Scholar 

  23. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.

    Article  CAS  PubMed  Google Scholar 

  24. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115(5):1232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamid SA, Totzeck M, Drexhage C, Thompson I, Fowkes RC, Rassaf T, et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol. 2010;105:257–66.

    Article  CAS  PubMed  Google Scholar 

  26. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008;105(29):10256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100(12):1749–54.

    Article  CAS  PubMed  Google Scholar 

  28. Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8S Suppl):2073S–85.

    CAS  PubMed  Google Scholar 

  30. Galeotti F, Barile E, Lanzotti V, Dolci M, Curir P. Quantification of major flavonoids in carnation tissues (Dianthus caryophyllus) as a tool for cultivar discrimination. Z Naturforsch C. 2008;63(3–4):161–8.

    CAS  PubMed  Google Scholar 

  31. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol J. 2007;2(10):1214–34.

    Article  CAS  PubMed  Google Scholar 

  32. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005;81(1 Suppl):243S–55.

    CAS  PubMed  Google Scholar 

  33. Donovan JL, Crespy V, Oliveira M, Cooper KA, Gibson BB, Williamson G. (+)-Catechin is more bioavailable than (−)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res. 2006;40(10):1029–34.

    Article  CAS  PubMed  Google Scholar 

  34. Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr. 2001;131(6):1753–7.

    CAS  PubMed  Google Scholar 

  35. Heiss C, Kelm M. Chocolate consumption, blood pressure, and cardiovascular risk. Eur Heart J. 2010;31(13):1554–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N. Does a glass of red wine improve endothelial function? Eur Heart J. 2000;21(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  37. Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100(10):1050–5.

    Article  CAS  PubMed  Google Scholar 

  38. Duffy SJ, Keaney Jr JF, Holbrook M, Gokce N, Swerdloff PL, Frei B, et al. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 2001;104(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  39. Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx MW, et al. Sustained benefits in vascular function through flavanol-containing cocoa in mediated diabetic patients: a double-masked, randomized, controlled trial. J Am Coll Cardiol. 2008;51:2141–9.

    Article  CAS  PubMed  Google Scholar 

  40. Heiss C, Kleinbongard P, Dejam A, Perre S, Schroeter H, Sies H, et al. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol. 2005;46(7):1276–83.

    Article  CAS  PubMed  Google Scholar 

  41. Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M. Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003;290(8):1030–1.

    Article  PubMed  Google Scholar 

  42. Heiss C, Finis D, Kleinbongard P, Hoffmann A, Rassaf T, Kelm M, et al. Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 week. J Cardiovasc Pharmacol. 2007;49:74–80.

    Article  CAS  PubMed  Google Scholar 

  43. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006;103(4):1024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS, et al. Human, rat, and mouse metabolism of resveratrol. Pharm Res. 2002;19(12):1907–14.

    Article  CAS  PubMed  Google Scholar 

  45. Hattori R, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol. 2002;282(6):H1988–95.

    Article  CAS  PubMed  Google Scholar 

  46. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res. 2010;86:103–12.

    Article  CAS  PubMed  Google Scholar 

  47. Lekli I, Szabo G, Juhasz B, Das S, Das M, Varga E, et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol. 2008;294(2):H859–66.

    Article  CAS  PubMed  Google Scholar 

  48. Mokni M, Limam F, Elkahoui S, Amri M, Aouani E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch Biochem Biophys. 2007;457(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  49. Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol. 2005;288(1):H328–35.

    Article  CAS  PubMed  Google Scholar 

  50. Wang S, Dusting GJ, May CN, Woodman OL. 3′, 4′-Dihydroxyflavonol reduces infarct size and injury associated with myocardial ischaemia and reperfusion in sheep. Br J Pharmacol. 2004;142(3):443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Fei K, Xu YW, Wang LX, Chen YQ. Dihydroxyflavonol reduces post-infarction left ventricular remodeling by preventing myocyte apoptosis in the non-infarcted zone in goats. Chin Med J (Engl). 2009;122(1):61–7.

    CAS  Google Scholar 

  52. Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F. (−)-Epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension. 2010;55:1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steffen Y, Schewe T, Sies H. (−)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochem Biophys Res Commun. 2007;359(3):828–33.

    Article  CAS  PubMed  Google Scholar 

  54. Gasper A, Hollands W, Casgrain A, Saha S, Teucher B, Dainty JR, Venema DP, et al. Consumption of both low and high (−)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: a randomized controlled trial. Arch Biochem Biophys. 2014;559:29–37.

    Article  CAS  PubMed  Google Scholar 

  55. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9(12):1498–505.

    Article  CAS  PubMed  Google Scholar 

  56. Gago B, Lundberg JO, Barbosa RM, Laranjinha J. Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic Biol Med. 2007;43(9):1233–42.

    Article  CAS  PubMed  Google Scholar 

  57. Rocha BS, Gago B, Barbosa RM, Laranjinha J. Diffusion of nitric oxide through the gastric wall upon reduction of nitrite by red wine: physiological impact. Nitric Oxide. 2010;22(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  58. Hirai M, Hotta Y, Ishikawa N, Wakida Y, Fukuzawa Y, Isobe F, et al. Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci. 2007;80(11):1020–32.

    Article  CAS  PubMed  Google Scholar 

  59. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007;292(5):E1378–87.

    Article  CAS  PubMed  Google Scholar 

  60. Chang WT, Shao ZH, Vanden Hoek TL, McEntee E, Mehendale SR, Li J, et al. Cardioprotective effects of grape seed proanthocyanidins, baicalin and wogonin: comparison between acute and chronic treatments. Am J Chin Med. 2006;34(2):363–5.

    Article  PubMed  Google Scholar 

  61. Florian T, Necas J, Bartosikova L, Klusakova J, Suchy V, Naggara EB, et al. Effects of prenylated isoflavones osajin and pomiferin in premedication on heart ischemia-reperfusion. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  62. Pataki T, Bak I, Kovacs P, Bagchi D, Das DK, Tosaki A. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr. 2002;75(5):894–9.

    CAS  PubMed  Google Scholar 

  63. Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, et al. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr. 2008;138(4):747–52.

    CAS  PubMed  Google Scholar 

  64. Yamazaki KG, Romero-Perez D, Barraza-Hidalgo M, Cruz M, Rivas M, Cortez-Gomez B, et al. Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2008;295(2):H761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suparto IH, Williams JK, Fox JL, Yusuf JT, Sajuthi D. Effects of hormone therapy and dietary soy on myocardial ischemia/reperfusion injury in ovariectomized atherosclerotic monkeys. Menopause. 2008;15(2):256–63.

    Article  PubMed  Google Scholar 

  66. Shao ZH, Wojcik KR, Dossumbekova A, Hsu C, Mehendale SR, Li CQ, et al. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J Cell Biochem. 2009;107(4):697–705.

    Article  CAS  PubMed  Google Scholar 

  67. Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther. 2009;27(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  68. Imamura G, Bertelli AA, Bertelli A, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice. Am J Physiol Heart Circ Physiol. 2002;282(6):H1996–2003.

    Article  CAS  PubMed  Google Scholar 

  69. Graf BA, Ameho C, Dolnikowski GG, Milbury PE, Chen CY, Blumberg JB. Rat gastrointestinal tissues metabolize quercetin. J Nutr. 2006;136(1):39–44.

    CAS  PubMed  Google Scholar 

  70. Tong H, Imahashi K, Steenbergen C, Murphy E. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002;90(4):377–9.

    Article  CAS  PubMed  Google Scholar 

  71. Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur J Pharmacol. 2009;604(1–3):111–6.

    Article  CAS  PubMed  Google Scholar 

  72. Ling H, Lou Y. Total flavones from Elsholtzia blanda reduce infarct size during acute myocardial ischemia by inhibiting myocardial apoptosis in rats. J Ethnopharmacol. 2005;101(1–3):169–75.

    Article  CAS  PubMed  Google Scholar 

  73. Hao Y, Sun Y, Xu C, Jiang X, Sun H, Wu Q, et al. Improvement of contractile function in isolated cardiomyocytes from ischemia-reperfusion rats by ginkgolide B pretreatment. J Cardiovasc Pharmacol. 2009;54(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ji ES, Yue H, Wu YM, He RR. Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin. 2004;25(3):306–12.

    CAS  PubMed  Google Scholar 

  75. Sato M, Bagchi D, Tosaki A, Das DK. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radic Biol Med. 2001;31(6):729–37.

    Article  CAS  PubMed  Google Scholar 

  76. Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens. 2003;21(12):2281–6.

    Article  CAS  PubMed  Google Scholar 

  77. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005;81(3):611–4.

    CAS  PubMed  Google Scholar 

  78. Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004;23(3):197–204.

    Article  CAS  PubMed  Google Scholar 

  79. Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C. Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens. 2005;18(6):785–91.

    Article  CAS  PubMed  Google Scholar 

  80. Grassi D, Mulder TP, Draijer R, Desideri G, Molhuizen HO, Ferri C. Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J Hypertens. 2009;27(4):774–81.

    Article  CAS  PubMed  Google Scholar 

  81. Faridi Z, Njike VY, Dutta S, Ali A, Katz DL. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial. Am J Clin Nutr. 2008;88(1):58–63.

    CAS  PubMed  Google Scholar 

  82. Horn P, Amabile N, Angeli FS, Sansone R, Stegemann B, Kelm M, Springer ML, et al. Dietary flavanol intervention lowers the levels of endothelial microparticles in coronary artery disease patients. Br J Nutr. 2014;111(7):1245–52.

    Article  CAS  PubMed  Google Scholar 

  83. Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290(8):1029–30.

    Article  PubMed  Google Scholar 

  84. Taubert D, Roesen R, Lehmann C, Jung N, Schomig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA. 2007;298(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  85. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46(2):398–405.

    Article  CAS  PubMed  Google Scholar 

  86. Hodgson JM, Puddey IB, Burke V, Watts GF, Beilin LJ. Regular ingestion of black tea improves brachial artery vasodilator function. Clin Sci (Lond). 2002;102(2):195–201.

    Article  Google Scholar 

  87. Grassi D, Desideri G, Necozione S, Ruggieri F, Blumberg JB, Stornello M, Ferri C. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia. Hypertension. 2012;60(3):827–32.

    Article  CAS  PubMed  Google Scholar 

  88. West SG, McIntyre MD, Piotrowski MJ, Poupin N, Miller DL, Preston AG, Wagner P, Groves LF, Skulas-Ray AC. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. Br J Nutr. 2014;111(4):653–61.

    Article  CAS  PubMed  Google Scholar 

  89. Flammer AJ, Sudano I, Wolfrum M, Thomas R, Enseleit F, Periat D, Kaiser P, et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J. 2012;33(17):2172–80.

    Article  CAS  PubMed  Google Scholar 

  90. Heiss C, Lauer T, Dejam A, Kleinbongard P, Hamada S, Rassaf T, et al. Plasma nitroso compounds are decreased in patients with endothelial dysfunction. J Am Coll Cardiol. 2006;47:573–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Totzeck M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Totzeck, M., Rassaf, T. (2017). Dietary Flavonoids as Modulators of NO Bioavailability in Acute and Chronic Cardiovascular Diseases. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46189-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46189-2_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46187-8

  • Online ISBN: 978-3-319-46189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics