Skip to main content

Content Generation for Serious Games

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9970))

Abstract

Content is a key component for successful computer games and it is also one of the most labour and time intensive tasks a game developer can face. As the scale of contemporary games increases, players come to expect higher standards of fidelity and immersion, thus increasing the need to create large amounts of content. This chapter focuses on the creation of content for serious games, particularly research that can aid designers and game developers in generating large amounts of content quickly and effectively. While game developers have had many tools and methods for creating content for standard computer games, this chapter will concentrate on the types of content specific to serious games.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.galanoe.eu/index.php/documents/.

  2. 2.

    http://www.eightydays.eu/.

  3. 3.

    http://rageproject.eu/.

References

  1. Andersen, E.: Optimizing adaptivity in educational games. In: Proceedings of the International Conference on the Foundations of Digital Games - FDG 2012, p. 279 (2012). http://dl.acm.org/citation.cfm?id=2282338.2282398

  2. Electronic Arts: Spore (Computer Game) (2008)

    Google Scholar 

  3. Blow, J.: Implementing a texture caching system. Game Developers Magazine (1998)

    Google Scholar 

  4. Braben, D., Bell, I.: Elite (computer game) (1984)

    Google Scholar 

  5. Cannon-Bowers, J.A., Salas, E.: Team performance and training in complex environments: recent findings from applied research. Curr. Dir. Psychol. Sci. 7, 83–87 (1998)

    Article  Google Scholar 

  6. Connolly, T.M., Boyle, L., Hainey, T., Ger, P.M., Earp, J., Ott, M.: Report on the integration of SGs in educational processes. Technical report, Games and Learning Alliance (GALA) (2013)

    Google Scholar 

  7. Damon, W.: Peer education: the untapped potential. J. Appl. Dev. Psychol. 5(4), 331–343 (1984). http://linkinghub.elsevier.com/retrieve/pii/0193397384900066

    Article  MathSciNet  Google Scholar 

  8. Sony Computer Entertainment: Little Big Planet (computer game) (2008)

    Google Scholar 

  9. Erol, K., Hendler, J., Nau, D.S.: Htn planning: complexity and expressivity. In: Proceedings of AAAI 1994, pp. 1123–1128 (1994)

    Google Scholar 

  10. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–254. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  11. Galerne, B., Lagae, A., Lefebvre, S., Drettakis, G.: Gabor noise by example. ACM Trans. Graph. (TOG) 31(4), 73 (2012)

    Article  Google Scholar 

  12. Hello Games: No Man’s Sky (computer game) (2016)

    Google Scholar 

  13. Gee, J.P.: Deep learning properties of good digital games. In: Ritterfeld, U., Cody, M.J., Vorderer, P. (eds.) Serious Games: Mechanisms and Effects, 1st edn, pp. 67–82. Routledge, New York (2009). Chap. 5

    Google Scholar 

  14. Göbel, S., Mehm, F., Radke, S., Steinmetz, R.: 80 days: adaptive digital storytelling for digital educational games. In: Cao, Y., Hannemann, A., Manjón, B.F., Göbel, S., Hockemeyer, C., Stefanakis, E. (eds.) Proceedings of the 2nd International Workshop on Story-Telling and Educational Games (STEG 2009), Aachen (2009)

    Google Scholar 

  15. Grappiolo, C., Cheong, Y.G., Togelius, J., Khaled, R., Yannakakis, G.N.: Towards player adaptivity in a serious game for conflict resolution. In: Proceedings 2011 3rd International Conferenceon Games and Virtual Worlds for Serious Applications, VS-Games 2011, pp. 192–198 (2011)

    Google Scholar 

  16. Hall, R.J.: Explanation-based scenario generation for reactive system models. Autom. Softw. Eng. 7(2), 157–177 (2000)

    Article  Google Scholar 

  17. Hughes, J.F., Van Dam, A., Foley, J.D., Feiner, S.K.: Computer Graphics: Principles and Practice. Pearson Education, Essex (2013)

    MATH  Google Scholar 

  18. Hullett, K., Mateas, M.: Scenario generation for emergency rescue training games. In: Proceedings of the 4th International Conference on Foundations of Digital Games - FDG 2009, pp. 99–106 (2009)

    Google Scholar 

  19. Jentsch, F., Abbott, D., Bowers, C.: Do three easy tasks make one difficult one? Studying the perceived difficulty of simulation scenarios. In: Proceedings of the 10th International Symposium on Aviation Psychology, Columbus, OH, pp. 1295–1300 (1999)

    Google Scholar 

  20. Kerssemakers, M., Tuxen, J., Togelius, J., Yannakakis, G.N.: A procedural procedural content generator generator. In: IEEE Conference on Computational Intelligence and Games, pp. 335–341 (2012)

    Google Scholar 

  21. Khaled, R., Nelson, M.J., Barr, P.: Design metaphors for procedural content generation in games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1509–1518. ACM (2013)

    Google Scholar 

  22. Konert, J.: Interactive Multimedia Learning: Using Social Media for Peer Education in Single-Player Educational Games. Springer, Darmstadt (2014). http://www.springer.com/engineering/signals/book/978-3-319-10255-9

    Google Scholar 

  23. Leuva, C.: Mobile game retention: 16 reasons why gamers leave. http://www.apptentive.com/blog/mobile-game-retention-why-gamers-leave/

  24. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Grap. (TOG) 21, 362–371 (2002). ACM

    Google Scholar 

  25. Lipp, M., Wonka, P., Wimmer, M.: Parallel generation of l-systems. In: Procceddings of VMV, pp. 205–214. Citeseer (2009)

    Google Scholar 

  26. Lopes, R.: Scenario adaptivity in serious games. In: Proceedings of the Fifth International Conference on the Foundations of Digital Games, FDG 2010, pp. 268–270 (2010). http://portal.acm.org/citation.cfm?doid=1822348.1822389

  27. Lopes, R., Bidarra, R.: A semantic generation framework for enabling adaptive game worlds. In: Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, pp. 6:1–6:8 (2011). http://doi.acm.org/10.1145/2071423.2071431

  28. Martin, G., Hughes, C., Schatz, S., Nicholson, D.: The use of functional L-systems for scenario generation in serious games. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, p. 6 (2010)

    Google Scholar 

  29. Marvie, J.E., Perret, J., Bouatouch, K.: The FL-system: a functional L-system for procedural geometric modeling. Vis. Comput. 21(5), 329–339 (2005)

    Article  Google Scholar 

  30. McShaffry, M.: Game Coding Complete. Cengage Learning, Boston (2012)

    Google Scholar 

  31. Michael, D.R., Chen, S.L.: Serious Games: Games that Educate, Train, and Inform. Muska & Lipman/Premier-Trade (2005)

    Google Scholar 

  32. Miller, G.: Efficient algorithms for local and global accessibility shading. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 319–326. ACM (1994)

    Google Scholar 

  33. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. ACM Trans. Graph. (TOG) 25(3), 614–623 (2006)

    Article  Google Scholar 

  34. Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of eroded fractal terrains. In: Proceedings of ACM SIGGRAPH Computer Graphics, pp. 41–50. ACM (1989)

    Google Scholar 

  35. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: Shop: simple hierarchical ordered planner. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Vol. 2, pp. 968–973. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  36. Blizzard North: Diablo (PC game) (1997)

    Google Scholar 

  37. Blizzard North: Diablo 2 (PC game) (2000)

    Google Scholar 

  38. OECD: Participative Web and User-Created Content. Technical report, OECD Publishing, Paris (2007)

    Google Scholar 

  39. Parberry, I.: Designer worlds: procedural generation of infinite terrain from real-world elevation data. J. Comput. Graph. Tech. (JCGT) 3(1), 74–85 (2014). http://jcgt.org/published/0003/01/04/

    Google Scholar 

  40. Parberry, I.: Modeling real-world terrain with exponentially distributed noise. J. Comput. Graph. Tech. 4(2), 1–9 (2015)

    Google Scholar 

  41. Parish, Y.I., Müller, P.: Procedural modeling of cities. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 301–308. ACM (2001)

    Google Scholar 

  42. Perlin, K.: Implementing improved perlin noise. In: Pharr, M. (ed.) GPU Gems, pp. 73–85. Addison-Wesley, Boston (2004)

    Google Scholar 

  43. Pfefferman, M.W.: A prototype architecture for an automated scenario generation system for combat simulations. Technical report, DTIC Document (1993)

    Google Scholar 

  44. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  45. Quilez, I.: Rendering worlds with two triangles with raytracing on the GPU in 4096 bytes (2008)

    Google Scholar 

  46. Shaker, N., Smith, G., Yannakakis, G.N.: Evaluating content generators. In: Shaker, N., Togelius, J., Nelson, M.J. (eds.) Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, New York (2015)

    Google Scholar 

  47. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, New York (2015)

    Google Scholar 

  48. Shaker, N., Togelius, J., Yannakakis, G.N.: The experience-driven perspective. In: Shaker, N., Togelius, J., Nelson, M.J. (eds.) Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, New York (2015)

    Google Scholar 

  49. Sina, S., Rosenfeld, A., Kraus, S.: Generating content for scenario-basedserious-games using crowdsourcing. In: Proceedings of the National Conference on Artificial Intelligence, vol. 1, pp. 522–529 (2014). http://www.scopus.com/inward/record.url?eid=2-s2.0-84908217049&partnerID=40&md5=93ca38f1bd0457e456ab8b180e5713c5

  50. Smelik, R.M., De Kraker, K.J., Tutenel, T., Bidarra, R., Groenewegen, S.A.: A survey of procedural methods for terrain modelling. In: Proceedings of the CASA Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS), pp. 25–34 (2009)

    Google Scholar 

  51. Smelik, R.M., Tutenel, T., De Kraker, K.J., Bidarra, R.: Declarative terrain modeling for military training games. Int. J. Comput. Games Technol. 2010, 2 (2010)

    Article  Google Scholar 

  52. Bethesda Softworks: The Elder Scrolls V: Skyrim (computer game) (2011)

    Google Scholar 

  53. Stiny, G.: Introduction to shape and shape grammars. Environ. plann. B 7(3), 343–351 (1980)

    Article  Google Scholar 

  54. Toy, M., Wichman, G., Arnold, K.: Rogue (computer game) (1980)

    Google Scholar 

  55. Interactive Data Visualization: Speedtree (1999)

    Google Scholar 

  56. Infinity Ward: Call of Duty 4: Modern Warfare (computer game) (2007)

    Google Scholar 

  57. Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 291–294. ACM (1996)

    Google Scholar 

  58. Yannakakis, G.N., Togelius, J., Khaled, R., Jhala, A., Karpouzis, K., Paiva, A., Vasalou, A.: Siren: towards adaptive serious games for teaching conflict resolution. In: Proceedings of the 4th Europeen Conference on Games Based Learning ECGBL2010, Copenhagen, Denmark, p. 10 (2010). http://www.image.ntua.gr/papers/640.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Dey .

Editor information

Editors and Affiliations

Further Reading

Further Reading

  • Procedural Content Generation in Games: A Textbook and an Overview of Current Research (http://pcgbook.com)

  • Texturing and Modelling: A Procedural Approach, Ebert et al.

  • Artificial Intelligence: A Modern Approach, Norvig

  • GPU Pro series

  • GPU Gems series (http://developer.nvidia.com/gpugems)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Dey, R., Konert, J. (2016). Content Generation for Serious Games. In: Dörner, R., Göbel, S., Kickmeier-Rust, M., Masuch, M., Zweig, K. (eds) Entertainment Computing and Serious Games. Lecture Notes in Computer Science(), vol 9970. Springer, Cham. https://doi.org/10.1007/978-3-319-46152-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46152-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46151-9

  • Online ISBN: 978-3-319-46152-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics