Skip to main content

Catalysts and Processes in Solid Oxide Fuel Cells

  • Chapter
  • First Online:
Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 574))

Abstract

This chapter describes the requirements necessary for the development of suitable solid oxide fuel cell electrodes. The materials and the chemical and electrochemical processes involved in the anode compartment are then specifically considered. Particular emphasis is given to the advances that have been achieved and the necessary improvements that are still needed in order to operate at intermediate temperature with renewable resources or light hydrocarbons. Moreover, the relationship between catalysis and electrocatalysis and the issues correlated with an integrated or direct oxidation will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adijanto, L., Kungas, R., Bidrawn, F., Gorte, R. J., & Vohs, J. M. (2001). Stability and performance of infiltrated La0.8Sr0.2CoxFe1-xO3 electrodes with and without Sm0.2Ce0.8O1.9 interlayer. Journal of Power Sources, 156, 5797–5802.

    Google Scholar 

  • Adler, S. B. (2004). Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 104, 4791–4843.

    Article  Google Scholar 

  • Aguiar, P., Chadwick, D., & Kershenbaum, L. (2002). Modelling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science, 57, 1665–1677.

    Article  Google Scholar 

  • Ahmed, S., & Krumpelt, M. (2001). Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy, 26, 291–301.

    Google Scholar 

  • Al-Masri, A., Peksen, M., Blum, L., & Stolten, D. (2014). A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy, 135, 539–547.

    Article  Google Scholar 

  • An, W., Gatewood, D., Dunlap, B., & Turner, C. H. (2011). Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory. Journal of Power Sources, 196, 4724–4728.

    Article  Google Scholar 

  • Angeli, D. S., Monteleone, G., Giaconia, A., & Leminidou, A. A. (2014). State of the art catalysts for CH4 steam reforming at low temperature. International Journal of Hydrogen Energy, 39, 1979–1997.

    Article  Google Scholar 

  • Atkinson, A., Barnett, S., Gorte, R. J., Irvine, J. T., Mcevoy, A. J., Mogensen, M., et al. (2004). Advanced anodes for high-temperature fuel cells. Nature Materials, 3, 17–23.

    Article  Google Scholar 

  • Bardini, L., Pappacena, A., Dominguez-Escalante, M., Llorca, J., Boaro, M., & Trovarelli, A. (2016). Structural and electrocatalytic properties of molten core Sn@SnOx nanoparticles on ceria. Applied Catalysis B: Environmental, 197, 254–261.

    Google Scholar 

  • Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy, 35, 8371–8384.

    Article  Google Scholar 

  • Bastidas, D. M., Tao, S. W., & Irvine, J. T. S. (2006). A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. Journal of Materials Chemistry, 16, 1603–1605.

    Article  Google Scholar 

  • Bertei, A., & Nicolella, C. (2015). Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. Journal of Power Sources, 279, 133–137.

    Article  Google Scholar 

  • Boaro, M. (2014). Unpublished communication.

    Google Scholar 

  • Boaro, M., Modafferi, M., Pappacena, A., Llorca, J., Baglio, V., Frusteri, F., et al. (2010). Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells. Journal of Power Sources, 195, 649–661.

    Article  Google Scholar 

  • Boaro, M., Pappacena, A., Abate, C., Ferluga, M., Llorca, J., & Trovarelli, A. (2014). Effect of redox treatments on Ce0.50Zr0.50O2 based solid oxide fuel cell anodes. Journal of Power Sources, 270, 79–91.

    Article  Google Scholar 

  • Bockris, J. O. M., & Reddy, A. K. N. (1970). Modern electrochemistry, Vol. 1. Mac-Donald/Plenum Press.

    Google Scholar 

  • Bøgild Hansen, J., & Rostrup-Nielsen, J. (2010). Sulfur poisoning on Ni catalyst and anodes. In W. Vielstich & A. Hubert (Eds.), Handbook of Fuel Cells-Fundamentals, Technology and Applications, New York: John Wiley & Sons.

    Google Scholar 

  • Brett, D. J. L., Atkinson, A., Brandon, N. P., & Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37, 1568–1578.

    Article  Google Scholar 

  • Burnat, D., Heel, A., Holzer, L., Kata, D., Lis, J., & Graule, T. (2012). Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources, 201, 26–36.

    Article  Google Scholar 

  • Busawon, A. N., Sarantaridis, D., & Atkinson, A. (2008). Ni infiltration as a possible solution to the redox problem of SOFC anodes. Electrochemical and Solid-State Letters, 11, B186–B189.

    Article  Google Scholar 

  • Cai, Q., Adjiman, C. S., & Brandon, N. P. (2011). Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model. Electrochimica Acta, 56(28), 10809–10819.

    Google Scholar 

  • Campanari, S., & Iora, P. (2004). Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry. Journal of Power Sources, 132, 113–126.

    Article  Google Scholar 

  • Canales-Vázquez, J., Ruiz-Morales, J. C., Marrero-López, D., PeËœna-Martínez, J., Nú˜nez, P., & Gómez-Romero, P. (2007). Fe-substituted (La, Sr) TiO3 as potential electrodes for symmetrical fuel cells (SFCs). Journal of Power Sources, 171, 552–557.

    Google Scholar 

  • Cargnello, M., Wieder, N. L., Montini, T., Gorte, R. J., & Fornasiero, P. (2010). Synthesis of dispersible Pd@CeO2 nanostructures by self-assembly. Journal of the American Chemical Society, 132, 1402–1409.

    Article  Google Scholar 

  • Cayan, F. N., Zhi, M., Pakalapati, R., Celik, I., Wu, N., & Gemmen, R. (2008). Effects of coal impurities on anode of solide oxide fuel cells. Journal of Power Sources, 185, 595–602.

    Article  Google Scholar 

  • Chan, S. H., & Xia, Z. T. (2002). Polarization effects in electrolyte/electrode-supported solid oxide fuel cells. Journal of Appled Electrochemistry, 32, 339–347.

    Article  Google Scholar 

  • Choi, Y., Choi, S., Jeong, H. Y., Liu, M., Kim, B.-S., & Kim, G. (2014). Highly efficient layer-by-layer-assisted infiltration for high-performance and cost-effective fabrication of nano-electrodes. ACS Applied Materials & Interfaces, 6, 17352–17357.

    Article  Google Scholar 

  • Choudhury, A., Chandra, H., & Arora, A. (2013). Application of solid oxide fuell cell technology for power generation—A Review. Renewable and Sustainable Energy Reviews, 20, 430–442.

    Article  Google Scholar 

  • Claire, Q. C., Adjiman, S., & Brandon, N. P. (2011). Modelling the 3D micro-structure and performance of solid oxide fuel cell electrodes: Computational parameters. Electrochimica Acta, 56, 5804–5814.

    Article  Google Scholar 

  • Contreras, J. L., Salmones, J., Colin-Luna, J. A., Nuño, L., Quintana, B., Cordova, I., et al. (2014). Catalysts for H2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39, 18835–18853.

    Article  Google Scholar 

  • Costamagna, P., Costa, P., & Antonucci, V. (1998). Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta, 43, 375–394.

    Article  Google Scholar 

  • Da Silva, A. L., & Heck, N. C. (2015). Thermodynamics of sulfur poisoning in solid oxide fuel cells revisited: The effect of H2S concentration, temperature, current density and fuel utilization. Journal of Power Sources, 296, 92–101.

    Article  Google Scholar 

  • Deng, X., & Petric, A. (2005). Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells. Journal of Power Sources, 140, 297–303.

    Article  Google Scholar 

  • Dholabhai, P., & Adams, J. (2012). A blend of first-principles and kinetic lattice Monte Carlo computation to optimize sarium-doped ceria. Journal of Materials Science, 47, 7530–7541.

    Article  Google Scholar 

  • Ding, D., Li, X., Lai, S. Y., Gerdes, K., & Liu, M. (2014). Enhancing SOFC cathode performance by surface modification through infiltration. Energy & Environmental Science, 7, 552–575.

    Article  Google Scholar 

  • Dokmaingram, P. (2014). Configuration development of Autothermal solid oxide fuel cell: A Review. Engineering Journal, 19, 1–13.

    Article  Google Scholar 

  • Donazzi, A., Rahmanipour, M., Maestri, M., Groppi, G., Bardini, L., Pappacena, A., et al. (2016). Experimental and model analysis of the co-oxidative behavior of syngas feed in an intermediate temperature solid oxide fuel cell. Journal of Power Sources, 306, 467–480.

    Article  Google Scholar 

  • Enger, B. C., Lødeng, R., & Holmen, A. (2008). A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanism over metal catalysts. Applied Catalysis A: General, 346, 1–27.

    Article  Google Scholar 

  • Feng, C., & Stewart, W. E. (1973). Practical models for isothermal diffusion and flow of gases in porous solids. Industrial & Engineering Chemistry Fundamentals, 12, 143–147.

    Article  Google Scholar 

  • Finnerty, C., Tompsett, G. A., Kendall, K., & Ormerod, R. M. (2000). SOFC system with integrated catalytic fuel processing. Journal of Power Sources, 86, 459–463.

    Article  Google Scholar 

  • Gawel, D. A. W., Pharoah, J. G., & Beale, S. B. (2015). Development of a SOFC performance model to analyze the powder to power performance of electrode microstructures. ECS Transactions, 68, 1979–1987.

    Article  Google Scholar 

  • Ge, X.-M., Chan, S.-H., Liu, Q.-L., & Sun, Q. (2012). Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Advanced Energy Materials, 2, 1156–1181.

    Article  Google Scholar 

  • Ge, X. M., Zhang, L., Fang, Y. N., Zeng, J., & Chan, S. H. (2011). Robust solid oxide cells for alternate power generation and carbon conversion. RSC Advances, 1, 715–724.

    Article  Google Scholar 

  • Giddey, S., Badwal, S. P. S., Kulkarni, A., & Munnings, C. (2012). A comprensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 38, 360–399.

    Article  Google Scholar 

  • Girona, K., Sailler, S., Gelin, P., Bailly, N., Georges, S., & Bultel, Y. (2015). Modelling of gradual internal reforming process over Ni-YSZ SOFC anode with a catalytic layer. The Canadian Journal of Chemical Engineering, 93, 285–296.

    Article  Google Scholar 

  • Gong, M. Y., Liu, X. B., Trembly, J., & Johnson, C. (2007). Sulfur-tolerant anode materials for solid oxide fuel cell application. Journal of Power Sources, 185, 1086–1093.

    Google Scholar 

  • Goodenough, J. B. (2004). Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics, 67, 1915–1993.

    Article  Google Scholar 

  • Gorski, A., Yurkiv, V., Starukhin, D., & Volpp, H.-R. (2011). H2O chemisorption and H2 oxidation on yttria-stabilized zirconia: Density functional theory and tempera-ture-programmed desorption studies. Journal of Power Sources, 196, 7188–7194.

    Article  Google Scholar 

  • Gorte, R. J., & Vohs, J. M. (2009). Nanostructured anodes for solid oxide fuel cells. Current Opinion in Colloid & Interface Science, 14, 236–244.

    Article  Google Scholar 

  • Gorte, R. J., & Vohs, J. M. (2011). Catalysis in solid oxide fuel cells. Annual Review of Chemical and Biomolecular Engineering, 2, 9–30.

    Article  Google Scholar 

  • Gorte, R. J., Park, S., Vhos, J. M., & Wang, C. (2000). Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Advanced Materials, 12, 1465–1469.

    Article  Google Scholar 

  • Gross, M. D., Vohs, J. M., & Gorte, R. J. (2007). A Strategy for Achieving High Performance with SOFC Ceramic Anodes. Electrochemical and Solid-State Letters, 10, B65–B69.

    Article  Google Scholar 

  • Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of hydrgen production techniques by steam reforming of ethanol: A review. Energy & Fuels, 19, 2098–2106.

    Article  Google Scholar 

  • Haugaard, J., & Livbjerg, H. (1998). Models of pore diffusion in porous catalysts. Chemical Engineering Science, 53, 2941–2948.

    Article  Google Scholar 

  • He, H. P., Huang, Y. Y., Regal, J., Boaro, M., Vohs, J. M., & Gorte, R. J. (2004). Low temperature fabrication of oxide composites for solid-oxide fuel cells. Journal of the American Ceramic Society, 87, 331–336.

    Article  Google Scholar 

  • He, Z., Li, H., & Birgersson, E. (2014). Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3d planar solid oxide fuel cell stack. Applied Energy, 136, 560–575.

    Article  Google Scholar 

  • He, Z., Li, H., & Birgersson, E. (2016). Correlating variability of modeling parameters with cell performance: Monte Carlo simulation of a quasi-3D planar solid oxide fuel cell. Renewable Energy, 85, 1301–1315.

    Article  Google Scholar 

  • Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J., Maier, L., et al. (2005). Methane reforming kinetics within a Ni–YSZ SOFC anode support. Applied Catalysis A: General, 295, 40–51.

    Article  Google Scholar 

  • Higman, C., & Tam, S. (2014). Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chemical Reviews, 114, 1673–1708.

    Article  Google Scholar 

  • Ho, T. X. (2014). A three-dimensional model for transient performance of a solid oxide fuel cell. International Journal of Hydrogen Energy, 39, 6680–6688.

    Article  Google Scholar 

  • Hong, L., Hu, J.-M., Gerdes, K., & Chen, L.-Q. (2015). Oxygen vacancy diffusion across cathode/electrolyte interface in solid oxide fuel cells: An electro-chemical phase-field model. Journal of Power Sources, 287, 396–400.

    Article  Google Scholar 

  • Irfan, M. F., Usman, M. R., & Kusakabe, K. (2011). Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy, 1, 12–40.

    Article  Google Scholar 

  • Irvine, J. T. S., & Connor, P. (2013). Alternative materials for SOFCs, opportunities and limitations in SOFC. In J. T. Irvine & P. Connor (Eds.), Solid Oxide Fuel Cells: Facts and Figures (pp. 163–180). London: Springer-Verlag: Green Energy and Technology series.

    Google Scholar 

  • Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C., & Mogensen, M. B. (2016). Evolution of the electrochemical interface in high-temperature fuel cell and elctrolyser. Nature Energy, 1, 1–13.

    Article  Google Scholar 

  • Izzo, J. R., Peracchio, A. A., & Chiu, W. K. S. (2008). Modeling of gas transport through a tubular solid oxide fuel cell and the porous anode layer. Journal of Power Sources, 176, 200–206.

    Article  Google Scholar 

  • Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. Journal Materials Science, 43, 6799–6833.

    Article  Google Scholar 

  • Jiang, S. P. (2012). Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. International Journal of Hydrogen Energy, 37, 449–470.

    Article  Google Scholar 

  • Jiang, S. P., Callus, P. J., & Badwal, S. P. S. (2000). Fabrication on performance of Ni/3 mol% Y2O3–ZrO2 cermet anodes for Solid Oxide fuel Cell. Solid State Ionics, 132, 1–14.

    Article  Google Scholar 

  • Jiang, S. P., Duan, Y. Y., & Love, J. G. (2002). Fabrication of high-performance NiO-Y2O3-ZrO2 cermet anodes of solid oxide fuel cells by ion impregnation. Journal of the Electrochemical Society, 149, A1175–A1183.

    Article  Google Scholar 

  • Jiang, L., Wang, G.-C., Guan, N.-J., Wu, Cai Z.-S., Pan, Y.-M., Zhao, X.-Z., et al. (2003). DFT studies of coadsorption and activation on some transition metal surfaces. Acta Physicochimica Sinica, 19, 393–397.

    Google Scholar 

  • Jiang, Z., Xia, C., & Fanglin, Fanglin Chen. (2010). Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 55, 3595–3605.

    Article  Google Scholar 

  • Johnson, M. F. L., & Stewart, W. E. (1965). Pore structure and gaseous diffusion in solid catalysts. Journal of Catalysis, 4, 248–252.

    Article  Google Scholar 

  • Jun, A., Kim, J., Shin, J., & Kim, G. (2016). Perovskite as a cathode material: A review of its role in solid-oxide fuel cell technology. ChemElectroChem, 3, 511–530.

    Article  Google Scholar 

  • Jung, S., Lu, C., He, H., Ahn, K., Gorte, R. J., & Vohs, J. M. (2006). Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes. Journal of Power Sources, 154, 42–50.

    Article  Google Scholar 

  • Kim, S.-D., Lee, J.-J., Moon, S.-H., Hyun, S.-H., Moona, J., Kimb, J., et al. (2007). Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells. Journal of Power Sources, 169, 265–270.

    Article  Google Scholar 

  • Kim, G., Lee, S., Shin, J. Y., Corre, G., Irvine, J. T. S., Vohs, J. M., et al. (2009). Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochemical and Solid-State Letters, 12, B48–B52.

    Article  Google Scholar 

  • Klein, J.-M., Bultel, Y., Georges, S., & Pons, M. (2007). Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 62, 1636–1649.

    Article  Google Scholar 

  • Kowalik, P., Antoniak-Juraka, K., BÅ‚esznowskib, M., Herrerac, M. C., Larrubiac, M. A., Alemanyc, L. J., et al. (2015). Biofuel steam reforming catalyst for fuel cell application. Catalysis Today, 254, 129–134.

    Article  Google Scholar 

  • Kuhn, M., & Napporn, T. W. (2010). Single-chamber solid oxide fuel cell technology—From its origins to today’s state of the art. Energies, 3, 57–134.

    Article  Google Scholar 

  • Laosiripojana, N., & Assabumrungrat, S. (2007). Catalytic steam reforming of methane, methanol and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. Journal of Power Sources, 163, 943–951.

    Article  Google Scholar 

  • Lee, J.-H., Moon, H., Lee, H.-W., Kim, J., Kim, J.-D., & Yoon, K. H. (2002). Quantitative Analysis of microstructure and its related electrical properties of SOFC anode. Solid State Ionic, 148, 15–26.

    Article  Google Scholar 

  • Lin, B., Wang, S., Liu, X., & Meng, G. (2010). Simple solid oxide fuel cells. Journal of Alloys and Compounds, 490, 214–222.

    Article  Google Scholar 

  • Lin, Y., Zhan, Z., Liu, & Barnett, S. A. (2005). Direct operation of solid oxide fuel cells with methane fuel. Solid State Ionics, 176, 1827–1835.

    Article  Google Scholar 

  • Liu, Z., Beibei, Liu, Ding, D., Mingfei, Liu, Chen, F., & Xia, C. (2013). Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 237, 243–259.

    Article  Google Scholar 

  • Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC materials design: New advances and tools. MaterialsToday, 14, 534–546.

    Google Scholar 

  • Lorente, E., Millan, M., & Brandon, N. P. (2012). Use of gasification syngas in SOFC: Impact of real tar on anode materials. International Journal of Hydrogen Energy, 37, 7271–7278.

    Article  Google Scholar 

  • Lou, X., Liu, Z., Wang, S., Xiu, Y., Wong, C. P., & Liu, M. (2010). Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property. Journal of Power Sources, 195, 419–424.

    Article  Google Scholar 

  • Lu, C., Sholklapper, T. Z., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2006). LSM-YSZ cathodes with reaction-infiltrated nanoparticles. Journal of the Electrochemical Society, 153, A1115–A1119.

    Article  Google Scholar 

  • Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141–337.

    Article  Google Scholar 

  • Mann, R. F., Amphlett, J. C., Peppley, B. A., & Thurgood, C. P. (2006). Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells. Journal of Power Sources, 161, 775–781.

    Article  Google Scholar 

  • Marbán, G., & Valdés-Solís, T. (2007). Towards the hydrogen economy?. International Journal of Hydrogen Energy, 32, 1625–1637.

    Article  Google Scholar 

  • McIntosh S., & Gorte, R. J. (2004). Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 104, 4845–4865.

    Google Scholar 

  • McNaught, A. D., & Wilkinson, A. (1997). IUPAC compendium of chemical terminology, 2nd edn. Oxford: © Blackwell Scientific Publications.

    Google Scholar 

  • Medford, A. J., Vojvodic, A., Hummelshøj, J. S., Voss, J., Abild-Pedersen, F., Studt, F., et al. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 328, 36–42.

    Article  Google Scholar 

  • Michaels, J. N., & Vayenas, C. G. (1984). Styrene production from ethylbenzene on platinum in a zirconia electrochemical reactor. Journal of the Electrochemical Society, 131, 2544–2550.

    Article  Google Scholar 

  • Mogensen, M., & Kammer, K. (2003). Conversion of hydrocarbons in solid oxide fuel cells. Annual Review of Materials Research, 33, 321–331.

    Article  Google Scholar 

  • Mogensen, M., & Skarup, S. (1996). Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics, 86, 1151–1160.

    Article  Google Scholar 

  • Molina, A., & Mondragón, F. (1998). Reactivity of coal gasification with steam and CO2. Fuel 77(15), 1831–1839.

    Google Scholar 

  • Muradov, N. Z., & Veriroǧlu, T. N. (2005). From hydrocarbon to hydrogen-carbon to hydrogen economy. International Journal of Hydrogen Energy, 30, 225–237.

    Article  Google Scholar 

  • Nagata, S., Momma, A., Kato, T., & Kasuga, Y. (2001). Numerical analysis of output characteristics of tubular SOFC with internal reformer. Journal of Power Sources, 101, 60–71.

    Article  Google Scholar 

  • Neagu, D., Oh, T.-S., Miller, D. N., Ménard, H., Bukhari, S. M., Gamble, S. R., et al. (2015). Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 6(1–8), 2015.

    Google Scholar 

  • Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H., & Irvine, J. T. (2013). In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 5, 916–923.

    Article  Google Scholar 

  • Ni, M., Leung, M. K. H., & Leung, D. Y. C. (2007). Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 48, 1525–1535.

    Article  Google Scholar 

  • Nicholas, J. D., & Barnett, S. A. (2009). Finite-Element modelling of Idealized infiltrated composite solid oxide fuel cell cathodes. Journal of the Electrochemical Society, 156, B458–B464.

    Article  Google Scholar 

  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37, 52–58.

    Article  Google Scholar 

  • Nikolla, E., Schwank, J., & Linic, S. (2007). Promotion of the long-term stability of reforming Ni catalysts by surface alloying. Journal of Catalysis, 250, 85–93.

    Article  Google Scholar 

  • Noh, H.-S., Lee, H., Kim, B.-K., Lee, H.-W., Lee, J.-H., & Son, J.-W. (2011). Microstructural factors of electrodes affecting the performance of anode-supported thin film yttria-stabilized zirconia electrolyte (∼1 µm) solid oxide fuel cells. Journal of Power Sources, 196, 7169–7174.

    Article  Google Scholar 

  • Noren, D. A., & Hoffman, M. A. (2005). Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. Journal of Power Sources, 152, 175–181.

    Article  Google Scholar 

  • Norskov, J. K. (1990). Chemisorption on metal surfaces. Reports on Progress in Physics, 53, 1253.

    Article  Google Scholar 

  • Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R, Bligaard, T., & Jonsson, H. (2004). Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 108, 17886–17892.

    Google Scholar 

  • Oyama, S. T., Hacarlioglu, P., Gu, Y., & Lee, D. (2012). Dry reforming of methane has no future for hydrogen production: Comparison with steam refroming at high pressure in standard amd membrane reactors. International Journal of Hydrogen Energy, 37, 10444–10450.

    Article  Google Scholar 

  • Pagliaro, M., & Rossi, M. (2010). The future of glycerol: New usages for a versatile raw material. Copyright: 2010 RCD Publisher.

    Google Scholar 

  • Pakhare, D., & Spivery, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43, 7813–7837.

    Article  Google Scholar 

  • Piao, J., Sun, K., Zhang, N., Chen, X., Xu, S., & Zhou, D. (2007). Preparation and characterization of Pr1-xSrxFeO3 cathode materials for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 172, 633–640.

    Article  Google Scholar 

  • Peng, Y., Si, W., Li, X., Luo, J., Li, J., Crittenden, J., et al. (2016). Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Applied Catalysis B: Environmental, 181, 692–698.

    Article  Google Scholar 

  • Primdahl, S., & Mogensen, M. (1997). Oxidationof hydrogen on Ni/YSZ cermet anodes. Journal of the Electrochemical Society, 144, 3409–3419.

    Article  Google Scholar 

  • Qin, H., Tan, X., Huang, W., Jiangn, J., & Jiangn, H. (2015). Application of urea precipitation method in preparation of advanced ceramic powders. Ceramic International, 41, 11598–11604.

    Article  Google Scholar 

  • Riess, I. (2015). Selectivity and mixed reactant fuel cells. Functional Materials Letters, 8, 1540010 (8 p).

    Google Scholar 

  • Roduner, E. (2014). Understanding catalysis. Chemical Society Reviews, 43, 8226–8239.

    Article  Google Scholar 

  • Rossmeisl, J., & Bessler, W. G. (2005). In catalytic activity for SOFC anode materials. Solid State Ionics, 178, 1694–1700.

    Article  Google Scholar 

  • Ruiz-Morales, J. C., Canales-Vázquez, J., Ballesteros, B., Peña-Martínez, J., Marrero-López, D., Irvine, J. T. S., & Núñez, P. (2007). LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. Journal of the European Ceramic Society, 27, 4223–4227.

    Google Scholar 

  • Ruiz-Morales, J. C., Canales-Vázquez, J., Marrero-López, D., Pérez-Coll, D., Peña-Martínez, J., & Núñez, P. (2008). An all-in-one flourite-based symmetrical solid oxide fuel cell. Journal of Power Sources, 177, 154–160.

    Google Scholar 

  • Ruiz-Morales, J. C., Canales-Vázquez, J., Peña-Martínez, J., Marrero-López, D., & Núñez, P. (2006). On the simultaneous use of La0.75Sr0.25 Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochimica Acta, 52, 278–284.

    Google Scholar 

  • Ruiz Morales, J. C., Canales-Vazquez, J., Savaniu, C., Marrero-Lopez, D., Zhou, W. Z., & Irvine, J. T. S. (2006). Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 439, 568–571.

    Article  Google Scholar 

  • Ruiz-Morales, J. C., Marrero-López, D., Gálvez-Sánchez, M., Canales-Vázquez, J., Cristian, Savaniu C., & Savvin, S. N. (2010). Engineering of materials for solid oxide fuel cells and other energy and environmental applications. Energy & Environmental Science, 3, 1670–1681.

    Article  Google Scholar 

  • Sengodan, S., Choi, S., Jun, A., Shin, T. H., Ju, Y.-W., Jeong, H. Y., et al. (2015). Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 14, 205–209.

    Article  Google Scholar 

  • Serra, J. M., & Buchkremer, H. P. (2007). On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes. Journal of Power Sources, 172, 768–774.

    Article  Google Scholar 

  • Shao, Z. P., & Haile, S. M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431, 170–173.

    Article  Google Scholar 

  • Shin, T. H., Ida, S., & Ishihara, T. (2011). Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. Journal of the American Chemical Society, 133(48), 19399–19407.

    Google Scholar 

  • Shiratori, Y., Ijichi, T., Oshima, T., & Sasaki, K. (2010). Internal reforming SOFC running on biogas. International Journal of Hydrogen Energy, 32, 7905–7912.

    Article  Google Scholar 

  • Sholklapper, T. Z., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2008). Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells, 5, 303–312.

    Article  Google Scholar 

  • Skinner, S. J., Cook, S., & Kilner, J. A. (2013). Materials for next generation SOFC. In J. T. Irvine & P. Connor (Eds.), Solid Oxide Fuel Cells: Facts and Figures. London: Springer-Verlag: Green Energy and Technology series, reference therein.

    Google Scholar 

  • Specchia, S. (2014). Fuel processing activities at European level: A panoramic overview. International Journal of Hydrogen Energy, 39, 17953–17968.

    Article  Google Scholar 

  • Steele, B. C. H., & Heinzel, A. (2001). Matrials for fuel cell technologies. Nature, 414, 345–351.

    Article  Google Scholar 

  • Stiller, C., Thorud, B., Seljeboe, S., Mathisen, O., Karoliussen, H., & Bolland, O. (2005). Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of Power Sources, 141, 227–240.

    Article  Google Scholar 

  • Stoukides, M., & Vayenas, C. G. (1984). Electrocatalytic rate enhancement of propylene epoxidation on porous silver electrodes using a zirconia oxygen pump. Journal of the Electrochemical Society, 131, 839–884.

    Article  Google Scholar 

  • Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry, 14, 1125–1144.

    Article  Google Scholar 

  • Sun, Y., Li, J., Zeng, Y., Amirkhiz, B. S., Wang, M., Behnamian, Y., et al. (2015). A-site deficient perovskite: The parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. Journal of Materials Chemistry A, 3, 11048–11056.

    Article  Google Scholar 

  • Suwanwarangkul, R., Croiset, E., Fowler, M. W., Douglas, P. L., Entchev, E., & Douglas, M. A. (2003). Performance comparison of fick’s, dusty-gas and stefan-maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources, 122, 9–18.

    Article  Google Scholar 

  • Suzue, Y., Shikazono, N., & Kasagi, N. (2007). Modeling of sofc anodes based on the stochastic reconstruction scheme. ECS Transactions, 7, 2049–2055.

    Article  Google Scholar 

  • Takahashi, S., Nishimoto, S., Matsuda, M., & Miyake, M. (2010). Electrode properties of Ruddlesden-Popper series Lnn+1NinO3n+1 (n = 1,2 and 3) as intermediate temperature solid oxide fuel cells. Journal of the American Ceramic Society, 93, 2329–2333.

    Article  Google Scholar 

  • Tao, S., & Irvine, J. T. S. (2004). Discovery and Characterization of Novel Oxide Anodes for Solid Oxide Fuel Cells. Chemical Record, 4, 83–95.

    Article  Google Scholar 

  • Toulhoat, H., & Raybaud, P. (2003). Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. Journal of Catalysis, 216, 63–72.

    Article  Google Scholar 

  • Tseronis, K., Kookos, I. K., & Theodoropoulos, C. (2008). Modelling mass transport in solid oxide fuel cell anodes: A case for a multidimensional dusty gas-based model. Chemical Engineering Science, 65, 626–5638.

    Google Scholar 

  • Tsipis, E. V., & Kharton, V. V. (2008). Electrode Materials and Reaction mechanism in solid oxide mechanism: A brief review. Journal of Solid State Electrochemistry, 12, 1367–1391.

    Article  Google Scholar 

  • Vohs, J. M., & Gorte, R. J. (2009). High performance SOFC cathodes prepared by infiltration. Advanced Materials, 21, 943–956.

    Article  Google Scholar 

  • Wang, S., & Lu, G. M. Q. (1996). Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 1996(10), 896–904.

    Article  Google Scholar 

  • Wang, Y., Shah, N., & Huffman, G. P. (2005). Simultaneous production of hydrogen and carbon nanostructures by decomposition of propane and cyclohexane over alumina supported binary catalysts. Catalysis Today, 99, 359–364.

    Article  Google Scholar 

  • Wei, B., Lv, Z., Huang, X. Q., Miao, J. P., Sha, X. Q., Xin, X. S., et al. (2006). Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3<x<0.7). Journal of the European Ceramic Society, 26(13), 2827–2832.

    Article  Google Scholar 

  • Xiang, Y., Lu, S., & Jiang, S. P. (2012). Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to super capacitors. Chemical Society Reviews, 41, 7291–7321.

    Article  Google Scholar 

  • Xuan, J., Leung, M. K. H., Leung, D. Y. C., & Ni, M. (2009). A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13, 1301–1313.

    Article  Google Scholar 

  • Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., & Yasuda, I. (2000). Evaluation and modelling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 86, 423–431.

    Article  Google Scholar 

  • Yan, A. Y., Cheng, M. J., Dong, Y. L., Yang, W. S., Maragou, V., Song, S. Q., et al. (2006). Investigation of a Ba0.5 Sr0.5Co0.8Fe0.2O3− δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance. Applied Catalysis, B: Environmental, 66, 64–71.

    Article  Google Scholar 

  • Yang, C., Yang, Z., Jin, C., Xiao, G., Chen, F., & Han, M. (2012). Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Advanced Materials, 24, 1439–1443.

    Article  Google Scholar 

  • Yoo, S., Choi, S., Shin, J., Liu, M., & Kim, G. (2012). Electrical properties, thermodynamic behavior, and defect analysis of Lan+1NinO3n+1+d infiltrated into YSZ scaffolds as cathodes for intermediate temperature SOFCs. RSC Advances, 2, 4648–4655.

    Article  Google Scholar 

  • Yuan, F., Zhang, Y., & Weber, W. J. (2015). Vacancy-vacancy interaction induced oxygen diffusivity enhancement in undoped non-stoichiometric ceria. Journal of Physical Chemistry C, 119, 13153–13159.

    Article  Google Scholar 

  • Zhan, Z., Lin, Y., Pillai, M., Kim, I., & Barnett, S. A. (2006). High-rate electrochemical partial oxidation of methane in solid oxide fuel cells. Journal of Power Sources, 161, 460–465.

    Article  Google Scholar 

  • Zhao, Y., Xia, C., Jia, L., Wang, Z., Li, H., Yu, J., et al. (2013). Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels. International Journal of Hydrogen Energy, 38, 16498–16517.

    Article  Google Scholar 

  • Zhang, Y., Ni, M., Yan, M., & Chen, F. (2015). Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic monte carlo simulation. Journal of Power Sources, 299, 578–586.

    Article  Google Scholar 

  • Zhu, W., Ding, D., & Xia, C. (2008). Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: A modelling comparison. Electrochemical and Solid-State Letters, 11, B83–B86.

    Article  Google Scholar 

  • Zhu, T., Yang, Z., & Han, M. (2015). Performance evaluation of solid oxide fuel cell with in-situ methane reforming. Fuel, 161, 168–173.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Italian Ministry of University and Research (MIUR) for funding BIO-ITSOFC project (2010KHLKFC 003, PRIN 2010–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Boaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Pappacena, A., Bardini, L., Boaro, M. (2017). Catalysts and Processes in Solid Oxide Fuel Cells. In: Boaro, M., Salvatore, A. (eds) Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology. CISM International Centre for Mechanical Sciences, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-46146-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46146-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46145-8

  • Online ISBN: 978-3-319-46146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics