Advertisement

Universal Coefficient Theorem and Quantum Field Theory

Chapter
  • 641 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

During the 1950s physics was still struggling with the standard model of elementary particles (Glashow, Nucl Phys, 22(4):579, 1961, [1]), renormalization (Wilson, Rev Mod Phys, 47(4):773, 1975, [2]) and experimental confirmation of the major results of non-abelian gauge theories (Yang and Mills, Phys Rev 96(1):191, 1954, [3]).

Keywords

Black Hole Quantum Gravity Elliptic Curve Cohomology Group Geometric Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579 (1961)CrossRefGoogle Scholar
  2. 2.
    K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773 (1975)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.N. Yang, R. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191 (1954)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Grothendieck, J. Dieudonne, Elements de geometrie algebrique. Publ. Inst. des Hautes Etudes Scientifiques. 4 (1960)Google Scholar
  5. 5.
    L. Alvarez-Gaume, C. Gomez, P.C. Nelson, G. Sierra, C. Vafa, Fermionic strings in the operator formalism. Nucl. Phys. B311 (1988)Google Scholar
  6. 6.
    A. Savage, Introduction to categorification, in Winter School I, New Directions in Lie Theory (2015). arXiv:math:1401.6037
  7. 7.
    B. Coecke, D. Pavlovic, Quantum measurements without sums, in Mathematics of Quantum Computing and Technology (Taylor and Francis, 2007), p. 567Google Scholar
  8. 8.
    A. Grothendieck, Technique de descente et theoremes d’existence en geometrie algebrique, II Sem. Bourbaki, Exp. 195 (1960)Google Scholar
  9. 9.
    E. Witten, Global gravitational anomalies. Commun. Math. Phys. 100, 197 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Fujikawa, H. Suzuki, Path Integrals and Quantum Anomalies (Clarendon Press, Oxford, 2004). ISBN 0-19-852913-9CrossRefzbMATHGoogle Scholar
  11. 11.
    F. Suzuki, Homotopy and Path Integrals, Lecture Notes in Physics and Astronomy, The University of British Columbia (2011). arXiv:1107.1459
  12. 12.
    B.C. Pierce, A taste of category theory for computer scientists, Carnegie Mellon University, Research Showcase (1988)Google Scholar
  13. 13.
    C. Kiefer, Quantum gravity: general introduction and recent developments. Annalen der Physik 15, 129 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004). ISBN 0-521-83733-2CrossRefzbMATHGoogle Scholar
  15. 15.
    H.W. Hamber, Quantum Gravitation (Springer Publishing, New York, 2009). ISBN 978-3-540-85292-6zbMATHGoogle Scholar
  16. 16.
    C.J. Isham, Prima facie questions in quantum gravity, Canonical Gravity: From Classical to Quantum (Springer, New York, 1994). ISBN 3-540-58339-4Google Scholar
  17. 17.
    R.D. Sorkin, Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys. 36(12), 2759 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Loll, Discrete approaches to quantum gravity in four dimensions. Liv. Rev. Relativ. 1, 13 (1998)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    S.W. Hawking, Quantum cosmology, 300 Years of Gravitation (Cambridge University Press, Cambridge, 1987), p. 631. ISBN 0-521-37976-8Google Scholar
  20. 20.
    P.N. Don, Particle emission rates from a black hole: Massless particles from an uncharged, non-rotating hole. Phys. Rev. D 13(2), 198 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.W. Hawking, Black hole explosions? Nature 248, 30 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)MathSciNetGoogle Scholar
  23. 23.
    A. Grothendieck, Inst. des Hautes Etudes Scientiques. Pub. Math. 29, 95 (1966)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Grothendieck, Sur quelques points d’algebre homologique. Tohoku Math. J. 2(9), 119 (1957)MathSciNetzbMATHGoogle Scholar
  25. 25.
    M.A. Armstrong, G.E. Cooke, C.P. Rourke, The Princeton Notes on the Hauptvermutung, Princeton (1968), Warwick (1972)Google Scholar
  26. 26.
    M. Freedman, The topology of four-dimensional manifolds. J. Diff. Geom. 17, 357 (1982)MathSciNetzbMATHGoogle Scholar
  27. 27.
    H. Sati, The elliptic curves in gauge theory, string theory, and cohomology. JHEP 03, 096 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Ando, M.J. Hopkins, N.P. Strickland, Elliptic spectra, the Witten genus and the theorem of the cube. Invent. Math. 146, 595 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    G. Moore, E. Witten, Self-duality, Ramond-Ramond fields and K-theory, JHEP 0005, 032 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    H. Nicolai, K. Peeters, M. Zamaklar, Loop quantum gravity: an outside view. Class. Quantum Gravity 22, 19 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    D.D. Freed, J. Hopkins, On Ramond-Ramond fields and \(K\)-theory. JHEP 0005, 044 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    E. Diaconescu, G. Moore, E. Witten, \(E_{8}\) gauge theory and a derivation of \(K\)-theory from \(M\)-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    B.H. Lian, G.J. Zuckerman, BRST cohomology and highest weight vectors I. Commun. Math. Phys. 135, 547 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    T.Y. Cao, Conceptual Developments of 20th Century Field Theories (Cambridge University Press, Cambridge, 2004). ISBN 0521634202zbMATHGoogle Scholar
  35. 35.
    C.S. Unnikrishnan, The equivalence principle and quantum mechanics: a theme in harmony. Mod. Phys. Lett. A 17, 1081 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    C. Adami, G.V. Steeg, Classical information transmission capacity of quantum black holes. Class. Quantum Gravity 31, 075015 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    R. Loll, The emergence of spacetime, or, quantum gravity on your desktop. Class. Quantum Gravity 25, 114006 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    B. Dittrich, F.C. Eckert, M. Benito, Coarse graining methods for spin net and spin foam models. New J. Phys. 14, 03500 (2012)Google Scholar
  40. 40.
    C. Hardin, A.D. Taylor, The Mathematics of coordinated Inference: A Study of Generalized Hat Problems, vol. 33, Series: Developments in Mathematics (Springer, New York, 2013)zbMATHGoogle Scholar
  41. 41.
    E. Witten, On background independent open string field theory. Phys. Rev. D 46, 5467 (1992)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Merkulov, On the geometric quantization of bosonic string. Class. Quantum Gravity 9(10), 2267 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Y. Yua, H.Y. Guoa, On the geometric quantization and BRST quantization for bosonic strings. Phys. Lett. B 216(1–2), 68 (1998)ADSMathSciNetGoogle Scholar
  44. 44.
    R. Brunetti, K. Fredenhagen, M. Kohler, The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A.A. Kirillov, Geometric Quantization, Dynamical systems 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 4 (VINITI, Moscow, 1985), p. 141Google Scholar
  46. 46.
    T. Kawai, K3 surfaces, Igusa cusp form and string theory, Topological field theory. Primit. Forms Relat. Top. 160, 273 (1997)zbMATHGoogle Scholar
  47. 47.
    R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367 (1948)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    S.W. Hawking, Quantum gravity and path integrals. Phys. Rev. D 18, 6 (1978)CrossRefGoogle Scholar
  49. 49.
    R. Brunetti, K. Fredenhagen, K. Rejzner, Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058v4
  50. 50.
    K. Rejzner, Batalin-Vilkovisky formalism in locally covariant field theory (2013). arXiv:1111.5130v1
  51. 51.
    N. Lashkari, J. Simon, From state distinguishability to effective bulk locality. JHEP 06, 038 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002). For the example see Section 2.2 “Homology with Coefficients”, Example 2.51, p. 155 for the Universal coefficient theorem see Section 3.A for the Homology case or page 195 for the cohomology casezbMATHGoogle Scholar
  53. 53.
    J.A. de Azcarraga, J.M. Izquierdo, Lie Groups (Cohomology and Some Applications in Physics, Cambridge University Press, Cambridge, Lie Algebras, 1998). ISBN 0-521-46501. For the non-trivial factors in the composition laws see chapter 3.3, p. 163. For the role of the second cohomology group see p. 161. For the role of the third cohomology group and associativity see p. 186zbMATHGoogle Scholar
  54. 54.
    A. Bilal, Lectures on Anomalies, Amsterdam-Brussels-Paris Lectures in Theoretical High Energy Physics (2008), p. 72. arXiv:0802.0634v1
  55. 55.
    G. Falqui, C. Reina, BRS Cohomology and Topological Anomalies, Comm. Math. Phys. 102, pag. 503 (1985)Google Scholar
  56. 56.
    R. Stora, Continuum gauge theories, in New Developments in Quantum Field Theory and Statistical Mechanics, vol. 26 (1976), p. 201Google Scholar
  57. 57.
    L. Bonora, P. Cotta-Ramusino, Some remarks on BRST transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations. Commun. Math. Phys. 87, 589 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    M.F. Atiyah, I.M. Singer, Dirac operators coupled to vector potentials. Proc. Natl. Acad. Sci. USA 81, 2597 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    O. Alvarez, I.M. Singer, B. Zumino, Gravitational anomalies and the family index theorem. Commun. Math. Phys. 96, 409 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    A.T. Patrascu, On SU(2) anomaly and Majorana Fermions (2014). arXiv:1402.7283
  61. 61.
    A.T. Patrascu, Entanglement, spacetime, and the Mayer-Vietoris theorem, Submitted to Phys. Rev. D., available via Researchgate (2015). doi: 10.13140/RG.2.1.1735.3684
  62. 62.
    N.O. Murchadha, The bag of gold re-opened. Class. Quantum Gravity 4, 1609 (1987)ADSCrossRefzbMATHGoogle Scholar
  63. 63.
    R. Arnowitt, S. Deser, C.W. Misner, Gravitation: An Introduction to Current Research, Louis Witten edition (1962), p. 227Google Scholar
  64. 64.
    J.W. York Jr., Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys 14, 456 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    D. Brill, On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves. Ann. Phys. 7, 466 (1959)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    G. ’t Hooft, Discretness and determinism in superstrings, ITP-UU-12/25; SPIN-12/23 (2012). arXiv:1207.3612v2
  67. 67.
    L. Bombelli, J. Lee, D. Meyer, R.D. Sorkin, Spacetime as a causal set. Phys. Rev. Lett. 59, 521 (1987)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    S.D. Mathur, Fuzzballs and black hole thermodynamics (2014). arXiv:1401.4097
  69. 69.
    L. Vaidman, Instantaneous measurement of nonlocal variables. Phys. Rev. Lett. 90, 010402 (2003)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations