Advertisement

BV and BRST Quantization, Quantum Observables and Symmetry

Chapter
  • 642 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Gauge redundancy has been a guiding principle for most of the theories about nature. Starting with quantum electrodynamics, continuing with Yang-Mills theories and Quantum Chromodynamics and reaching into the realms of supergravity, all theories appear to obey this principle. The existence of a gauge redundancy therefore appears to be ubiquitous. When performing path integral quantization, gauge fixing is a natural requirement. The existence of unphysical degrees of freedom would otherwise make practical calculations impossible.

Keywords

Gauge Transformation Ghost Number Leibniz Algebra Coefficient Structure Auxiliary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Brunetti, K. Fredenhagen, K. Rejzner, Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058v4
  2. 2.
    N. Nakanishi, Indefinite-metric quantum field theory of general relativity. Prog. Theor. Phys. 59, 972 (1978)Google Scholar
  3. 3.
    N. Nakanishi, I. Ojima, Covariant operator formalism of gauge theories and quantum gravity, World Scientific Lecture Notes in Physics vol. 27 (World Scientific Publications, Singapore, 1990)Google Scholar
  4. 4.
    M. Henneaux, Lectures on the Antifield-BRST formalism for gauge theories. Nucl. Phys. B (Proc. Suppl.) 18A, 47 (1990)Google Scholar
  5. 5.
    A. Fuster, M. Henneaux, A. Maas, BRST-antifield quantization: a short review. Int. J. Geom. Methods Mod Phys. 2, 939 (2005)Google Scholar
  6. 6.
    T.A. Larsson, Quantum jet theory i: free fields (2007). arXiv:hep-th/0701164v1
  7. 7.
    J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach. Contemp. Math. 219, 195 (1998)Google Scholar
  8. 8.
    J.F. O’Farrill, BRST Cohomology, Lecture Notes at University of Edinburgh (2006)Google Scholar
  9. 9.
    A.T. Patrascu, On SU(2) anomaly and Majorana Fermions, eprint (2014). arXiv:1402.7283
  10. 10.
    G. Falqui, C. Reina, BRS cohomology and topological anomalies. Commun. Math. Phys. 102, 503 (1985)Google Scholar
  11. 11.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the anti-field formalism: II. Application to Yang-Mills theory, Commun. Math. Phys. 174, 93 (1995)Google Scholar
  12. 12.
    R.P. Malik, Dual BRST symmetry for QED. Mod. Phys. Lett. A 16(8), 477 (2001)Google Scholar
  13. 13.
    E. Getzler, Two dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163, 473 (1994)Google Scholar
  14. 14.
    K.W. Gruenberg, The Universal coefficient theorem in the cohomology of groups. J. Lond. Math. Soc. 43, 239 (1968)Google Scholar
  15. 15.
    B.H. Lian, G.J. Zuckerman, BRST cohomology and highest weight vectors I. Commun. Math. Phys. 135, 547 (1991)Google Scholar
  16. 16.
    K.W. Gruenberg, Resolutions by relations. J. Lond. Math. Soc. 35, 481 (1960)Google Scholar
  17. 17.
    B.H. Lian, G.J. Zuckerman, BRST-cohomology of the super-virasoro algebras. Commun. Math. Phys. 125, 301 (1989)Google Scholar
  18. 18.
    G.J. Zuckerman, Modular forms, strings and Ghosts. Proc. Symp. Pure Math. 49, 273 (1989)Google Scholar
  19. 19.
    D.A. Leites, Cohomologies of Lie superalgebras. Funct. Anal. Appl. 9, 340 (1975)Google Scholar
  20. 20.
    D. Wigner, Algebraic cohomology of topological groups. Trans. Am. Math. Soc. 178, 83–93 (1973)Google Scholar
  21. 21.
    A. Borel, Homology and cohomology of compact connected Lie groups. Proc. Nat. Acad. Sci. 39, 1142 (1953)Google Scholar
  22. 22.
    G.R. Biyogmam, On the harmonic oscillator algebra. Commun. Algebra 44(1), 164 (2015)Google Scholar
  23. 23.
    T. Pirasvili, On Leibniz homology. Ann. l’institut Fourrier Grenoble 44(2), 401 (1994)Google Scholar
  24. 24.
    J.M. Casas, E. Khamaladze, M. Ladra, Higher Hopf formula for homology of Leibniz n-algebras. J. Pure Appl. Algebra 214, 797 (2010)Google Scholar
  25. 25.
    J.L. Loday, T. Pirasvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296, 139 (1993)Google Scholar
  26. 26.
    J.M. Casas, E. Faro, A.M. Vieites, Abelian extensions of Leibniz algebras. Commun. Algebra 27(6), 2833 (1999)Google Scholar
  27. 27.
    J. Li, Y. Su, Leibniz central extension on centerless twisted Schrodinger-Virasoro algebra. Front. Math. 3(3), 337 (2008)Google Scholar
  28. 28.
    C. Roger, J. Unterberger, The Schrodinger-Virasoro Lie group and algebra, representation theory and cohomological study. Ann. Henri Poincare 7, 1477 (2006)Google Scholar
  29. 29.
    M. Kato, S. Matsuda, Construction of singular vertex operators as degenerate primary conformal fields. Phys. Lett. B 172, 216 (1986)Google Scholar
  30. 30.
    M. Kato, S. Matsuda, Oscillator representation of Virasoro algebra and Kac determinant. Prog. Theor. Phys. 78(1), 158 (1987)Google Scholar
  31. 31.
    D. Liu, N. Hu, Leibniz central extensions on some infinite dimensional lie algebras. Commun. Algebra 32(6), 2385 (2004)Google Scholar
  32. 32.
    E. Dror, Homology spheres. Israel J. Math. 15, 115 (1973)Google Scholar
  33. 33.
    G.W. Moore, PiTP Lectures on BPS states and Wall-Crossing in d \(=\) 4, N \(=\) 2 theories, PiTP Prospects in Theoretical Physics (2010)Google Scholar
  34. 34.
    F. Denef, Supergravity flows and D-brane stability. JHEP 0008, 050 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    J. Walcher, Extended holomorphic anomaly and loop amplitudes in open topological strings. Nucl. Phys. B 817(3), 167 (2009)Google Scholar
  36. 36.
    M.K. Prasad, Ch. Sommerfield, Exact classical solution for ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 35, 760 (1975)Google Scholar
  37. 37.
    E. Witten, D. Olive, Supersymmetry algebras that include topological charges. Phys. Lett. B 78 97 (1978)Google Scholar
  38. 38.
    J. Harvey, G. Moore, Algebras, BPS states and strings. Nucl. Phys. B 463, 315 (1996)Google Scholar
  39. 39.
    J. Harvey, G. Moore, On the algebras of BPS states. Commun. Math. Phys. 197 489 (1998)Google Scholar
  40. 40.
    A. Chamseddine, M.S. Volkov, Non-abelian BPS monopoles in N \(=\) 4 gauged supergravity. Phys. Rev. Lett. 79, 3343 (1997)Google Scholar
  41. 41.
    D. Gaiotto, G. Moore, A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation. Adv. Math. 234, 239 (2013)Google Scholar
  42. 42.
    R. Pandharipande, R.P. Thomas, Stable pairs and BPS invariants. J. Am. Math. Soc. 23, 267 (2010)Google Scholar
  43. 43.
    A. Bayer, Polynomial Bridgeland stability condition and the large volume limit. Geom. Topol. 13, 2389 (2009)Google Scholar
  44. 44.
    Y. Toda, Limit stable objects on Calabi-Yau 3-folds. Duke Math. J. 149(1), 157 (2009)Google Scholar
  45. 45.
    R.P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibration. J. Differ. Geom. 54(2), 367 (2000)Google Scholar
  46. 46.
    L.I. Nicolaescu, Seiberg-Witten invariants of rational homology 3-spheres. Commun. Contemp. Math. 6(6), 833 (2004)Google Scholar
  47. 47.
    R. Pandharipande, R.P. Thomas, Curve counting via stable pairs in the derived category. Invent. Math. 178, 407 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations