Universal Coefficient Theorems

Part of the Springer Theses book series (Springer Theses)


As a continuation of the last chapter, I give here various facts relevant for the construction of universal coefficient theorems. I also show some results stemming from this type of theorems, mainly referring to [1] but also to [2]. This way of thinking may solve several problems found in quantum field theories [3].


Exact Sequence Short Exact Sequence Renormalization Group Equation Topological Invariant Contravariant Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. F. Davis, P. Kirk, Lecture Notes in Algebraic Topology, Dept. of Math. Indiana University, Bloomington, IN 47405 (1991)Google Scholar
  2. 2.
    P.C. Kainen, Universal coefficient theorems for generalized homology and stable cohomotopy. Pac. J. Math. 37, 397 (1971)Google Scholar
  3. 3.
    E. Witten, Topological quantum field theory. Comm. Math. Phys. 117(3), 353 (1988)Google Scholar
  4. 4.
    N. Bourbaki, Algebre, Chapitre 10, Algebre homologique (2006). ISBN 978-3-540-34493-3Google Scholar
  5. 5.
    J. Zinn-Justin, Renormalization and renormalization group: from the discovery of UV divergences to the concept of effective field theories, in Proceedings of the NATO ASI on Quantum Field Theory: Perspective and Prospective (1998)Google Scholar
  6. 6.
    L.P. Kadanoff, Renormalization Group Techniques on a Lattice, Cooperative Phenomena, (North Holland, Amsterdam, 1974), p. 139Google Scholar
  7. 7.
    J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996). ISBN 0-521-49959-3Google Scholar
  8. 8.
    A.T. Patrascu, Quantization, Holography and the Universal Coefficient Theorem. Phys. Rev. D 90, 045018 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J. Adamek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, The Joy of Cats, Dover Books on Mathematics (2009). ISBN-13: 978-04864-6934-8Google Scholar
  10. 10.
    P.S. Collecott, The renormalization group equation and its solution. Il Nuovo Cimento 24 A(2) (1974)Google Scholar
  11. 11.
    S.I. Gelfand, Y. Manin, Methods of Homological Algebra, 2nd edn., Springer Monographs in Mathematics (Springer, Berlin, 2003). ISBN 3-540-43583-2CrossRefzbMATHGoogle Scholar
  12. 12.
    C.A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics (1995). ISBN 9-78052-1559-874Google Scholar
  13. 13.
    P.J. Hilton, U. Stammbach, A course in Homological Algebra (Springer, Heidelberg, 1971). ISBN 0-387-90032-2Google Scholar
  14. 14.
    F.W. Lawvere, Adjointness in foundations, with author commentary, Reprint in Theory and Applications of Categories 16 (2006), p. 1Google Scholar
  15. 15.
    S. Eilenberg, N. Steenrod, Axiomatic approach to homology theory. Proc. Nat. Acad. Sci. USA 31, 117 (1945)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Eilenberg, Cohomology theory in abstract groups. Ann. Math. 48, 51 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A.T. Patrascu, Black Holes, Information and the Universal coefficient theorem (2014). arXiv:1410.5291
  18. 18.
    J. Rosenberg, C. Schochet, The Kunneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory. Mem. Am. Math. Soc. 62, 348 (1986)MathSciNetzbMATHGoogle Scholar
  19. 19.
    S. Eilenberg, S. Mac Lane, Group extensions and homology. Ann. Math. 43, 757 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Eilenberg, Singular homology theory. Ann. Math. 45, 407 (1944)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations