Advertisement

The Atyiah Singer Index Theorem

Chapter
  • 634 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Another important theorem relating topology and algebra is the Atyiah-Singer index theorem [1]. Some fundamental notions of differential geometry and topology will be required and therefore I will introduce them here.

Keywords

Gauge Transformation Cohomology Class Principal Bundle Index Theorem Connection Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.F. Atiyah, I.M. Singer, The index of elliptic operators. Ann. Math. 87(3), 484 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Milnor, J.D. Stasheff, Characteristic classes Annals of Mathematics 76 (1974). ISBN 0-691-08122-0Google Scholar
  3. 3.
    S. Chern, Complex Manifolds Without Potential Theory (Springer, Heidelberg, 1995). ISBN 0-387-90422-0Google Scholar
  4. 4.
    J.A. de Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1998). ISBN 0-521-46501 (see p. 84 and p. 105 and continuation for the theorems)Google Scholar
  5. 5.
    S. Chern, Characteristic classes of Hermitian manifolds. Ann. Math. 47(1), 85 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B.L. Sharma, Topologically invariant integral characteristic classes, topology and its applications 21(2), 135 (1985)Google Scholar
  7. 7.
    S. Morita, Characteristic classes of surface bundles. Inventiones Mathematicae 90(3), 551 (1987)Google Scholar
  8. 8.
    V.S. Varadarajan, on the ring of invariant polynomials on a semisimple lie algebra. Am. J. Math. 90(1), 308 (1968)Google Scholar
  9. 9.
    W.L. Tu, An introduction to manifolds (2008). ISBN 978-0-387-48098-5Google Scholar
  10. 10.
    N. Steenrod, The topology of Fibre Bundles, Princeton Landmarks in Mathematics (1999). ISBN-13: 978-0691005-485Google Scholar
  11. 11.
    A. Grothendieck. La theorie des classes de Chern. Bull. Soc. Math. France 86,137 (1958)Google Scholar
  12. 12.
    R.F. Brown, On the Lefschetz number and the Euler class. Trans. Am. Math. Soc. 118, 174 (1965)Google Scholar
  13. 13.
    P. Bressler, The first Pontryagin class. Comp. Math. 143, 1127 (2007)Google Scholar
  14. 14.
    R.E. Stong, Stiefel-Whitney classes of manifolds. Pac. J. Math. 68(1), 271 (1977)Google Scholar
  15. 15.
    M. Atiyah, F. Hirzebruch, Spin-manifolds and group actions. Essays on Topology and Related Topics (1970), p. 18. ISBN 978-3-642-49199-3Google Scholar
  16. 16.
    R. Bott, On the Cherneil homomorphism and the continuous cohomology of Lie groups. Adv. Math. 11, 289 (1973)Google Scholar
  17. 17.
    A. Alekseev, E. Meinrenken, Lie Theory and the Chern-Weil homomorphism. Annales scientifiques de l’Ecole Normale Suprieure. 38(2), 303 (2005). ISSN 0012-9593Google Scholar
  18. 18.
    W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations, vol. 4, Nankai tracts in Mathematics (World-Scientific Publications, Singapore, 2001). ISSN 1793-1118zbMATHGoogle Scholar
  19. 19.
    S. Chern, J. Simons, Characteristic forms and geometric invariants. Ann. Math. Second Series 99(1), 48 (1974)Google Scholar
  20. 20.
    J. Zanelli, Chern Simons forms in gravitation theories. Class. Quant. Grav. 29, 133001 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P.C. Roberts, Multiplicities and Chern Classes in Local Algebra, vol. 133, Cambridge Tracts in Mathematics (1998). ISSN 0950-6284Google Scholar
  22. 22.
    M. Nieper-Wikirchen, Chern Numbers and Rozansky-Witten Invariants of Compact Hyper-Kaehler Manifolds (World-Scientific, Singapore, 2004). ISBN 978-981-238-851-3Google Scholar
  23. 23.
    G. Tabuada, A universal characterization of the Chern character maps. Proc. Amer. Math. Soc. 139, 1263 (2011)Google Scholar
  24. 24.
    L.A. Takhtajan, Explicit computation of the Chern character forms. Geometriae Dedicata1 (2015). ISSN 0046-5755Google Scholar
  25. 25.
    C. Bertone, The Euler characteristic as a polynomial in the Chern classes. Int. J. Algebra 2(16), 757 (2008)Google Scholar
  26. 26.
    N.E. Mavromatos, A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion. J. Phys. A: Math. Gen. 21, 2279 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations