Skip to main content

The Atyiah Singer Index Theorem

  • Chapter
  • First Online:
The Universal Coefficient Theorem and Quantum Field Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 744 Accesses

Abstract

Another important theorem relating topology and algebra is the Atyiah-Singer index theorem [1]. Some fundamental notions of differential geometry and topology will be required and therefore I will introduce them here.

If I had a world of my own, everything would be nonsense. Nothing would be what it is, because everything would be what it isn’t. And contrary wise, what is, it wouldn’t be. And what it wouldn’t be, it would. You see?

Lewis Carroll, Alice in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Atiyah, I.M. Singer, The index of elliptic operators. Ann. Math. 87(3), 484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Milnor, J.D. Stasheff, Characteristic classes Annals of Mathematics 76 (1974). ISBN 0-691-08122-0

    Google Scholar 

  3. S. Chern, Complex Manifolds Without Potential Theory (Springer, Heidelberg, 1995). ISBN 0-387-90422-0

    Google Scholar 

  4. J.A. de Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1998). ISBN 0-521-46501 (see p. 84 and p. 105 and continuation for the theorems)

    Google Scholar 

  5. S. Chern, Characteristic classes of Hermitian manifolds. Ann. Math. 47(1), 85 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  6. B.L. Sharma, Topologically invariant integral characteristic classes, topology and its applications 21(2), 135 (1985)

    Google Scholar 

  7. S. Morita, Characteristic classes of surface bundles. Inventiones Mathematicae 90(3), 551 (1987)

    Google Scholar 

  8. V.S. Varadarajan, on the ring of invariant polynomials on a semisimple lie algebra. Am. J. Math. 90(1), 308 (1968)

    Google Scholar 

  9. W.L. Tu, An introduction to manifolds (2008). ISBN 978-0-387-48098-5

    Google Scholar 

  10. N. Steenrod, The topology of Fibre Bundles, Princeton Landmarks in Mathematics (1999). ISBN-13: 978-0691005-485

    Google Scholar 

  11. A. Grothendieck. La theorie des classes de Chern. Bull. Soc. Math. France 86,137 (1958)

    Google Scholar 

  12. R.F. Brown, On the Lefschetz number and the Euler class. Trans. Am. Math. Soc. 118, 174 (1965)

    Google Scholar 

  13. P. Bressler, The first Pontryagin class. Comp. Math. 143, 1127 (2007)

    Google Scholar 

  14. R.E. Stong, Stiefel-Whitney classes of manifolds. Pac. J. Math. 68(1), 271 (1977)

    Google Scholar 

  15. M. Atiyah, F. Hirzebruch, Spin-manifolds and group actions. Essays on Topology and Related Topics (1970), p. 18. ISBN 978-3-642-49199-3

    Google Scholar 

  16. R. Bott, On the Cherneil homomorphism and the continuous cohomology of Lie groups. Adv. Math. 11, 289 (1973)

    Google Scholar 

  17. A. Alekseev, E. Meinrenken, Lie Theory and the Chern-Weil homomorphism. Annales scientifiques de l’Ecole Normale Suprieure. 38(2), 303 (2005). ISSN 0012-9593

    Google Scholar 

  18. W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations, vol. 4, Nankai tracts in Mathematics (World-Scientific Publications, Singapore, 2001). ISSN 1793-1118

    MATH  Google Scholar 

  19. S. Chern, J. Simons, Characteristic forms and geometric invariants. Ann. Math. Second Series 99(1), 48 (1974)

    Google Scholar 

  20. J. Zanelli, Chern Simons forms in gravitation theories. Class. Quant. Grav. 29, 133001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P.C. Roberts, Multiplicities and Chern Classes in Local Algebra, vol. 133, Cambridge Tracts in Mathematics (1998). ISSN 0950-6284

    Google Scholar 

  22. M. Nieper-Wikirchen, Chern Numbers and Rozansky-Witten Invariants of Compact Hyper-Kaehler Manifolds (World-Scientific, Singapore, 2004). ISBN 978-981-238-851-3

    Google Scholar 

  23. G. Tabuada, A universal characterization of the Chern character maps. Proc. Amer. Math. Soc. 139, 1263 (2011)

    Google Scholar 

  24. L.A. Takhtajan, Explicit computation of the Chern character forms. Geometriae Dedicata1 (2015). ISSN 0046-5755

    Google Scholar 

  25. C. Bertone, The Euler characteristic as a polynomial in the Chern classes. Int. J. Algebra 2(16), 757 (2008)

    Google Scholar 

  26. N.E. Mavromatos, A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion. J. Phys. A: Math. Gen. 21, 2279 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei-Tudor Patrascu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrascu, AT. (2017). The Atyiah Singer Index Theorem. In: The Universal Coefficient Theorem and Quantum Field Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46143-4_6

Download citation

Publish with us

Policies and ethics