Algebraic Topology

Part of the Springer Theses book series (Springer Theses)


In the previous chapter I described basic topology and some of its most fundamental theorems and constructions.


Topological Space Simplicial Complex Homology Group Effective Field Theory Algebraic Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Mirkovic, Lecture Notes in Homological Algebra (University of Massachusetts Amherst, A, 2013)Google Scholar
  2. 2.
    G.E. Bredon, Topology and Geometry (Springer, Berlin, 1993). ISBN 0-387-97926-3Google Scholar
  3. 3.
    L.C. Kinsey, Topology of Surfaces (Springer, Berlin, 1993). ISBN 978-1-4612-0899-0Google Scholar
  4. 4.
    S. Akbulut, J.D. McCarthy, Casson’s invariant for oriented homology 3-spheres. Math. Notes, vol. 36 (Princeton University Press, Princeton, 1990). ISBN 9-780-6-91607-511Google Scholar
  5. 5.
    S. Bauer, M. Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, Invent. Math. 155(1), 1 (2004)Google Scholar
  6. 6.
    C. Manolescu, Pin(2)-equivariant Seiberg-Witten Floer Homology and the triangulation conjecture, J. Amer. Math. Soc. 29, 147 (2016)Google Scholar
  7. 7.
    R.C. Kirby, L.C. Siebenmann, Foundational essays on topological manifolds, smoothings and triangulations, Ann. of Mathematics Studies, vol. 88 (Princeton University Press, Princeton, 1977). ISBN 978-06910-8191-5Google Scholar
  8. 8.
    P.S. Alexandrov, T.H. Komm, Combinatorial Topology (Graylock Press, Adams, 1956). ISBN-13: 978-04864-0179-9Google Scholar
  9. 9.
    H.S.M. Coxeter, Regular Polytopes (Dover edition, New York, 1973). ISBN 0-486-61480-8Google Scholar
  10. 10.
    J.F. Davis, P. Kirk, Lecture Notes in Algebraic Topology, Dept. of Math. Indiana University, Bloomington, IN 47405 (1991)Google Scholar
  11. 11.
    D.E. Gelewski, R.J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Mathematics, 111, 1 (1980)Google Scholar
  12. 12.
    J. de Loera, J. Rambau, Triangulations: structures for algorithms and applications (Springer, Berlin, 2010). ISBN 978-3-642-12970-4Google Scholar
  13. 13.
    X. Allamigeon, P. Benchimol, S. Gaubert, M. Joswig, Combinatorial simplex algorithms can solve mean payoff games. SIAM J. Opt. 24, 4 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L.S. Pontryagin, Foundations of Combinatorial Topology (Dover Publications, New York, 2015). ISBN-13: 978-0-486-40685-5Google Scholar
  15. 15.
    V. Drobot, S. McDonald, Approximation properties of polynomials with bounded integer coefficients, Pacific J. Math. 86, 447 (1980)Google Scholar
  16. 16.
    N.E. Steenrod, Homology with local coefficients, Ann. of Math., Second series, 44(4), 610 (1943)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations