Advertisement

Elements of General Topology

Chapter
  • 630 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Let me start this chapter with a simple why-question: Why general topology? What is the main problem it wishes to solve? The answer is deceivingly simple: general topology aims at analyzing and describing topological spaces.

Keywords

Topological Space Discrete Space General Topology Hausdorff Space Discrete Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.A. Morris, Topology Without Tears, Online e-book (2007)Google Scholar
  2. 2.
    S.C. Kleene, Introduction to metamathematics, North-Holland (1959). ISBN-13: 978-0923891572Google Scholar
  3. 3.
    M. Hazewinkel, Axiomatic method, Encyclopedia of Mathematics (Springer, Berlin, 2001). ISBN 978-1-55608-010-4Google Scholar
  4. 4.
    R. Haag, D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5, 848 (1964)Google Scholar
  5. 5.
    G.F. Simmons, Introduction to Topology and Modern Analysis (McGraw Hill Book Company, New York, 1968) p.144. ISBN 0-89874-551-9Google Scholar
  6. 6.
    A. Hatcher, Notes on Introductory Point-Set Topology, Cornell University lecture notes (2007)Google Scholar
  7. 7.
    E. Castellani, Symmetry and Equivalence, Symmetries in Physics: Philosophical Reflections (Cambridge University, Cambridge, 2003). ISBN 9-78052-152889-4Google Scholar
  8. 8.
    L.A. Steen, J.A. Seebach, Counterexamples in Topology (Springer, New York, 1978). ISBN-13: 978-0486687353Google Scholar
  9. 9.
    J.M. Moller, London Math Soc. Lecture Notes Series, 175, Cambridge University Press, p. 131 (1992)Google Scholar
  10. 10.
    M.F. Atiyah, Duality in Mathematics and Physics, lecture notes from the Institut de Matematica de la Universitat de Barcelona (IMUB) (2007)Google Scholar
  11. 11.
    S. Awodey, Category Theory. Oxford Logic Guides vol. 49 (Oxford University Press, Oxford, 2006). ISBN-13: 978-0199237180Google Scholar
  12. 12.
    F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano, 43 (1973)Google Scholar
  13. 13.
    N. Bourbaki, Topologie Generale 5–10 (collective author) (1998). ISBN 3-54064-563-2Google Scholar
  14. 14.
    J.M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series 12, (Oxford: Clarendon Press, Oxford, 1995). ISBN 0-19-851194-9Google Scholar
  15. 15.
    W. Browder, The homotopy type of differentiable manifolds, Proceedings of the Aarhus Symposium, p. 42 (1962)Google Scholar
  16. 16.
    R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis (3rd edn.) (Wiley Publications, New York, 2001). ISBN-13: 978-0471433316Google Scholar
  17. 17.
    R.B. Kellogg, T.Y. Li, J.A. Yorke, A constructive proof of the Brouwer fixed point theorem and computational results, SIAM J. Numer. Anal. 13(4), 473 (1976)Google Scholar
  18. 18.
    V.I. Istratescu, Fixed Point Theory, Reidel (1981). ISBN 90-277-1224-7Google Scholar
  19. 19.
    H.E. Scarf, Fixed-point theorems and economic analysis, Mathematical theorems can be used to predict probable effects of changes in economic policy, Am. Sci. 71(3), 289 (1983)Google Scholar
  20. 20.
    S.L. Singh, S.N. Mishra, R. Chugh, R. Kamal, General common fixed point theorems and applications, J. Appl. Math. ID 902312, (2012)Google Scholar
  21. 21.
    W.A. Sutherland, Introduction to Metric and Topological Spaces (Oxford Science Publications, Oxford, 1975). ISBN 0-19-853161-3Google Scholar
  22. 22.
    L. Guilong, Topologies induced by equivalence relations, Commun. Comput. Inf. Sci. 163, 204 (2011)Google Scholar
  23. 23.
    F. Hausdorff, Erweiterung einer Homeomorphie, Fundamenta Mathematicae, 16, p. 352 (1930)Google Scholar
  24. 24.
    K. Keremedis, E. Tachtsis, Countable Compact Hausdorff Spaces Need Not Be Metrizable in ZF, Proc. Am. Math. Soc. 135(4), 1205 (2007)Google Scholar
  25. 25.
    S.S. Gabriyelyan, Topologies on groups determined by sets of convergent sequences, J. Pure Appl. Alg. 217(5), 786 (2013)Google Scholar
  26. 26.
    D.K. Burke, Cauchy Sequences in Semimetric Spaces, Proc. Am. Math. Soc. 33(1), 161 (1972)Google Scholar
  27. 27.
    R. Prabir, Separability of metric spaces, Trans. Am. Math. Soc. 149, 19 (1970)Google Scholar
  28. 28.
    G. Beer, A polish topology for the closed subsets of a polish space, Proc. Am. Math. Soc. 113(4), 1123 (1991)Google Scholar
  29. 29.
    L. Nguyen Van, The structural Ramsey theory of metric spaces and topological dynamics of isometry groups, Memoirs Am. Math. Soc. 968, 206 (2010). ISBN 978-0-8218-4711-4Google Scholar
  30. 30.
    S. Kasahara, On some generalizations of the Banach contraction theorem, Publ. RIMS, Kyoto Univ. 12, 427 (1976)Google Scholar
  31. 31.
    S.H. Jones, Applications of the Baire category theorem, Real Anal. Exchange, 23(2), 363 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations