Part of the Springer Theses book series (Springer Theses)


The structure of this thesis was based on two parts. The first part (Chaps.  1 8) may look somehow old-fashioned. Indeed, it represents work done either one hundred years ago or during the second half of the 20th century. However, how can we make any progress if we ignore the work of the predecessors?


  1. 1.
    A. Grothendieck, Inst. des Hautes Etudes Scientiques. Pub. Math. 29, 95 (1966)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Mac Lane, Homology, Classics in Mathematics (Springer, Berlin, 1995). ISBN 3-540-58662-8zbMATHGoogle Scholar
  3. 3.
    S.I. Gelfand, Y. Manin, Methods of Homological Algebra, 2nd edn., Springer Monographs in Mathematics (Springer, Berlin, 2003). ISBN 3-540-43583-2CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002). ISBN 0-521-79160-xzbMATHGoogle Scholar
  5. 5.
    J.P. May, A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics Series (1999). ISBN-13: 978-0226511832Google Scholar
  6. 6.
    J.L. Kelley, General Topology, Graduate Texts in Mathematics (1975). ISBN-13: 978-0923891558Google Scholar
  7. 7.
    F. Hausdorff, Grundzuge der Mengenlehre, Veit, Leipzig (1914). ISBN 978-0-8284-0061-9Google Scholar
  8. 8.
    H. Poincare, Analysis situs. J. de l’Ecole Polytechnique 1, 1 (1895)zbMATHGoogle Scholar
  9. 9.
    N. Bourbaki, Topologie Generale 1–4 (Springer Science & Business Media, 1995). ISBN 978-3-642-61701-0Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations