Advertisement

The Universal Coefficient Theorem and Black Holes

Chapter
  • 631 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter I intend to give a more practical application of the theorems proved in the previous one. It represents my original research and is based on several of my observations. While most of it is new, there are some technical aspects that have been taken over from various sources.

Keywords

Black Hole Entangle State Homology Group Equivalence Principle Covariant Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.A. de Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1998). ISBN 0-521-46501. For the non-trivial factors in the composition laws see chapter 3.3, p. 163. For the role of the second cohomology group see p. 161. For the role of the third cohomology group and associativity see p. 186zbMATHGoogle Scholar
  2. 2.
    J.A. de Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1998). ISBN 0-521-46501. See p. 291 for the connection between the topological structure of the Galilei and Poincare groups and the existence of a simple covariant formulationzbMATHGoogle Scholar
  3. 3.
    S. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D 10(14), 2460 (1976)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)MathSciNetGoogle Scholar
  6. 6.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theory Math. Phys. 2, 231 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Einstein, Die Grundlage der Allgemeinen relativitatstheorie. Ann. d. Physik 354(7), 769 (1916)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    J.A. de Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1998). ISBN 0-521-46501 (see p. 84 and p. 105 and continuation for the theorems)zbMATHGoogle Scholar
  9. 9.
    J.F. Davis, P. Kirk, Lecture Notes in Algebraic Topology, vol. 47405 (Dept. of Math. Indiana University, Bloomington, IN, 1991)zbMATHGoogle Scholar
  10. 10.
    D.A. Lowe, J. Polchinsky, L. Thorlacius, J. Uglum, Black hole complementarity vs. locality. Phys. Rev. D 52, 6997 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Schwarzschild, Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften 7, 189 (1916)Google Scholar
  12. 12.
    A.T. Patrascu, Quantization, holography and the universal coefficient theorem. Phys. Rev. D 90, 045018 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    E. Schrodinger, Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    M.V. Raamsdonk, Building up spacetime with quantum entanglement. Gen. Rel. Grav. 42, 2323 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    St J. Summers, R. Werner, The vacuum violates Bell’s inequalities. Phys. Lett. 110A, 5 (1985)MathSciNetGoogle Scholar
  16. 16.
    J. Maldacena, L. Susskind, Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L.H. Kauffman, S.J. Lomonaco Jr., Quantum entanglement and topological entanglement. New J. Phys. 4, 73 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Zhou, J. Gia-Wei Chern, F.R. Joynt, Topology of entanglement evolution of two qubits. Int. J. Mod. Phys. B 26, 1250054 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    T.P. Oliveira, P.D. Sacramento, Entanglement modes and topological phase transitions in superconductors. Phys. Rev. B 89, 094512 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Hamma, W. Zhang, S. Haas, D.A. Lidar, Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order. Phys. Rev. B 77, 155111 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    F.S.N. Lobo, G.J. Olmo, D. Rubiera-Garcia, Microscopic wormholes and the geometry of entanglement. Eur. Phys. J. C 74, 2924 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhang, T. Grover, A. Turner, M. Oshikawa, A. Vishwanath, Quasi-particle statistics and braiding from ground state entanglement. Phys. Rev. B 85, 235151 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    L.H. Kauffman, S.J. Lomonaco Jr, Braiding operators are universal quantum gates. New J. Phys. 6 (2004)Google Scholar
  24. 24.
    L. Vietoris, Uber die Homologiegruppen der Vereinigung zweier Komplexe. Monatshefte fur Mathematik 37, 159 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    F. Mintert, C. Viviescas, A. Buchleitner, Entanglement and decoherence. Lect. Notes Phys. 768, 61 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975)Google Scholar
  27. 27.
    S.A. Werner, Class. Quant. Grav. 11(6A), 207 (1994)Google Scholar
  28. 28.
    J. Anandan, Phys. Rev. D 15, 1448 (1977)Google Scholar
  29. 29.
    J. Audretsch, C. Lammerzahl, Appl. Phys. B 54, 351 (1992)Google Scholar
  30. 30.
    P. Zanardi, D. Lidar, S. Lloyd, Quantum tensor product structures are observable induced. Phys. Rev. Lett. 92, 060402 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    L. Derkacz, M. Gwozdz, L. Jakobczyk, Entanglement beyond tensor product structure: algebraic aspects of quantum non-separability. J. Phys. A 45, 2 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    St J. Summers, R. Werner, BellÕs inequalities and quantum field theory. I. General setting. J. Math. Phys. 28, 2440 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    St J. Summers, R. Werner, Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    S. Schlieder, Some remarks about the localization of states in a quantum field theory. Comm. Math. Phys. 1(4), 265 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    B. Reznik, Distillation of vacuum entanglement to EPR pairs (2000). arXiv:quant-ph/0008006
  36. 36.
    O. Viro, J. Knot Theory Ramif. 18, 729 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations