Skip to main content

Analysis Models for Polymer Composites Across Different Length Scales

  • Chapter
  • First Online:
Book cover The Structural Integrity of Carbon Fiber Composites

Abstract

This chapter presents the analysis models, developed at different length scales, for the prediction of inelastic deformation and fracture of polymer composite materials reinforced by unidirectional fibers. Three different length scales are covered. Micro-mechanical models are used to understand in detail the effects of the constituents on the response of the composite material, and to support the development of analysis models based on homogenized representations of composite materials. Meso-mechanical models are used to predict the strength of composite structural components under general loading conditions. Finally, macro-mechanical models based on Finite Fracture Mechanics, which enable fast strength predictions of simple structural details, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a region with a set of points, it is possible to define a Voronoi polygon as the sub-region that is closer to a given point than to any other. The set of Voronoi polygons defines a subdivision of this region, known as Dirichlet tessellation [29]. The standard deviation of the areas of the Voronoi polygons can be used as a measure of the periodicity of the distribution of fibers [13]—in a periodic distribution all Voronoi polygons are equal, and the standard deviation of the areas is zero.

  2. 2.

    The neighboring fibers are defined as the fibers that share the sides of the Voronoi polygon of the fiber of interest [13]. The standard deviation of the distances to neighboring fibers provide a measure of how separate from each other the fibers are [13]. Like the standard deviation of the areas of the Voronoi polygons, the standard deviation of the distances to neighboring fibers in a periodic distribution is zero.

  3. 3.

    The Cumulative Distribution Function of the orientation of the nearest neighbor represents the total number of fibers that have the nearest neighbor oriented along a certain direction. For a perfectly random spatial arrangement, given by the Poisson distribution, this statistical descriptor follows a straight diagonal line meaning that a given orientation has the same probability of occurring as any other orientation. Deviations from this line correspond to the existence of preferred orientations, as in periodic distributions.

References

  1. C. Bergin, X-33/VentureStar — What really happened (2006), https://www.nasaspaceflight.com/2006/01/x-33venturestar-what-really-happened/

    Google Scholar 

  2. R.W. Batterman, The tyranny of scales, in The Oxford Handbook of the Philosophy of Physics, Chap. 7, ed. by R.W. Batterman. Oxford Handbooks (Oxford University Press, Oxford, 2013), pp. 255–286

    Google Scholar 

  3. R. de Borst, J.J.C. Remmers, Computational methods for debonding in composites, in Mechanical Response of Composites, Chap. 1, vol. 10, ed. by P.P. Camanho, C.G. Dávila, S.T. Pinho, J.J.C. Remmers. Computational Methods in Applied Sciences (Springer, Dordrecht, 2008), pp. 1–25

    Google Scholar 

  4. C.G. Dávila, C.A. Rose, E.V. Iarve, Modeling fracture and complex crack networks in laminated composites, in Mathematical Methods and Models in Composites, Chap. 8, vol. 50, ed. by V. Mantič. Computational and Experimental Methods in Structures, Aliabadi FMH, Series Editor (Imperial College Press, London, 2014), pp. 297–347

    Google Scholar 

  5. P.P. Camanho, Application of numerical methods to the strength prediction of mechanically fastened joints in composite laminates. Ph.D. thesis, Centre for Composite Materials, Imperial College of Science, Technology and Medicine, London (1999)

    Google Scholar 

  6. A. Arteiro, Structural mechanics of thin-ply laminated composites. Ph.D. thesis, Faculdade de Engenharia, Universidade do Porto, Porto (2016)

    Google Scholar 

  7. P. Ladevèze, G. Lubineau, D. Violeau, D. Marsal, A computational damage micromodel for laminate composites, in IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials, ed. by T. Sadowski (Springer, Heidelberg, 2006), pp. 1–12

    Chapter  Google Scholar 

  8. A.R. Melro, Analytical and numerical modelling of damage and fracture of advanced composites. Ph.D. thesis, Faculdade de Engenharia, Universidade do Porto, Porto (2011)

    Google Scholar 

  9. P.D. Soden, A.S. Kaddour, M.J. Hinton, Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos. Sci. Technol. 64, 589–604 (2004)

    Article  Google Scholar 

  10. N. Tessitore, A. Riccio, A novel FEM model for biaxial non-crimp fabric composite materials under tension. Comput. Struct. 84, 1200–1207 (2006)

    Article  Google Scholar 

  11. A. Petriccione, D. Annicchiarico, V. Antonucci, M. Giordano, A. Riccio, F. Scaramuzzino, A stiffness volume averaging based approach to model non-crimp fabric reinforced composites. Compos. Sci. Technol. 72, 360–369 (2012)

    Article  Google Scholar 

  12. C. González, J. Llorca, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67, 2795–2806 (2007)

    Article  Google Scholar 

  13. A.R. Melro, P.P. Camanho, S.T. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites. Compos. Sci. Technol. 68, 2092–2102 (2008)

    Article  Google Scholar 

  14. E. Totry, C. González, J. Llorca, Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos. Sci. Technol. 68, 829–839 (2008)

    Article  Google Scholar 

  15. E. Totry, C. González, J. Llorca, Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational mechanics. Compos. Sci. Technol. 68, 3128–3136 (2008)

    Article  Google Scholar 

  16. E. Totry, J.M. Molina-Aldareguía, C. González, J. Llorca, Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70, 970–980 (2010)

    Article  Google Scholar 

  17. A.R. Melro, P.P. Camanho, F.M.A. Pires, S.T. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II - micromechanical analyses. Int. J. Solids Struct. 50, 1906–1915 (2013)

    Article  Google Scholar 

  18. X. Bai, M.A. Bessa, A.R. Melro, P.P. Camanho, L. Guo, W.K. Liu, High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Compos. Struct. 134, 132–141 (2015)

    Article  Google Scholar 

  19. D. Trias, J. Costa, A. Turon, J.E. Hurtado, Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater. 54, 3471–3484 (2006)

    Article  Google Scholar 

  20. D. Trias, J. Costa, J.A. Mayugo, J.E. Hurtado, Random models versus periodic models for fiber reinforced composites. Comput. Mater. Sci. 38, 316–324 (2006)

    Article  Google Scholar 

  21. J. Feder, Random sequential adsorption. J. Theor. Biol. 87, 237–254 (1980)

    Article  Google Scholar 

  22. V.A. Buryachenko, N.J. Pagano, R.Y. Kim, J.E. Spowart, Quantitative description and numerical simulation of random microstructures of composites and their effective elastic moduli. Int. J. Solids Struct. 40, 47–72 (2003)

    Article  Google Scholar 

  23. J.H. Oh, K.K. Jin, S.K. Ha, Interfacial strain distribution of a unidirectional composite with randomly distributed fibers under transverse loading. J. Compos. Mater. 40 (9), 759–778 (2006)

    Article  Google Scholar 

  24. R. Pyrz, Quantitative description of the microstructure of composites. Part I: morphology of unidirectional composite systems. Compos. Sci. Technol. 50 (2), 197–208 (1994)

    Google Scholar 

  25. A. Wongsto, S. Li, Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section. Compos. Part A Appl. Sci. 36, 1246–1266 (2005)

    Article  Google Scholar 

  26. W.S. Jodrey, E.M. Tory, Computer simulation of close random packing of equal spheres. Phys. Rev. A 32 (4), 2347 (1985)

    Google Scholar 

  27. D. Trias, Analysis and simulation of transverse random fracture of long fibre reinforced composites. Ph.D. thesis, Universitat de Girona, Escola Politècnica Superior, Girona (2005)

    Google Scholar 

  28. S. Yang, A. Tewari, A.M. Gokhale, Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite. Acta Mater. 45 (7), 3059–3069 (1997)

    Article  Google Scholar 

  29. A. Bowyer, Computing Dirichlet tessellations. Comput. J. 24 (2), 162–166 (1981)

    Article  Google Scholar 

  30. P.M. Dixon, Ripley’s K function, in Encyclopedia of Environmetrics, vol. 3, ed. by A.H. El-Shaarawi, W.W. Piegorsch (Wiley, New York, 2002), pp. 1796–1803

    Google Scholar 

  31. T. Matsuda, N. Ohno, H. Tanaka, T. Shimizu, Effects of fiber distribution on elastic-viscoplastic behavior of long fiber-reinforced laminates. Int. J. Mech. Sci. 45, 1583–1598 (2003)

    Article  Google Scholar 

  32. P.D. Soden, M.J. Hinton, A.S. Kaddour, Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58, 1011–1022 (1998)

    Article  Google Scholar 

  33. ABAQUS 6.6/Standard User’s Manual. Hibbit, Karlsson & Sorensen, Inc. (2006)

    Google Scholar 

  34. A.R. Melro, P.P. Camanho, F.M.A. Pires, S.T. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I - constitutive modelling. Int. J. Solids Struct. 50, 1897–1905 (2013)

    Article  Google Scholar 

  35. Z.P. Bažant, B.H. Oh, Crack band theory for fracture of concrete. Mater. Struct. 16 (93), 155–177 (1983)

    Google Scholar 

  36. A. Arteiro, G. Catalanotti, A.R. Melro, P. Linde, P.P. Camanho, Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos. Struct. 116, 827–840 (2014)

    Article  Google Scholar 

  37. P.P. Camanho, A. Arteiro, A.R. Melro, G. Catalanotti, M. Vogler, Three-dimensional invariant-based failure criteria for fibre-reinforced composites. Int. J. Solids Struct. 55, 92–107 (2015)

    Article  Google Scholar 

  38. T.J. Vaughan, C.T. McCarthy, Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71, 388–396 (2011)

    Article  Google Scholar 

  39. A. Arteiro, G. Catalanotti, A.R. Melro, P. Linde, P.P. Camanho, Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites. Compos. Part A Appl. Sci. 79, 127–137 (2015)

    Article  Google Scholar 

  40. T.J. Vaughan, C.T. McCarthy, A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites. Compos. Part A Appl. S. 42, 1217–1228 (2011)

    Article  Google Scholar 

  41. R.P. Tavares, A.R. Melro, M.A. Bessa, A. Turon, W.K. Liu, P.P. Camanho, Mechanics of hybrid polymer composites: analytical and computational study. Comput. Mech. 57, 405–421 (2016)

    Article  Google Scholar 

  42. Abaqus 6.12 Documentation, Dassault Systèmes Simulia Corp., Providence (2012)

    Google Scholar 

  43. A. Turon, C.G. Dávila, P.P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)

    Article  Google Scholar 

  44. M. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)

    Article  Google Scholar 

  45. J. Varna, L.A. Berglund, M.L. Ericson, Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Compos. Part A Appl. S. 28A, 317–326 (1997)

    Article  Google Scholar 

  46. A.R. Melro, P.P. Camanho, S.T. Pinho, Influence of geometrical parameters on the elastic response of unidirectional composite materials. Compos. Struct. 94, 3223–3231 (2012)

    Article  Google Scholar 

  47. Z. Hashin, Failure criteria for unidirectional fibre composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  48. B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, M. Ando, Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61, 1615–1624 (2001)

    Article  Google Scholar 

  49. F.J. Guild, K.D. Potter, J. Heinrich, R.D. Adams, M.R. Wisnom, Understanding and control of adhesive crack propagation in bonded joints between carbon fibre composite adherents II. Finite element analysis. Int. J. Adhes. Adhes. 21, 445–453 (2001)

    Article  Google Scholar 

  50. K.W. Garrett, J.E. Bailey, Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. J. Mater. Sci. 12, 157–168 (1977)

    Article  Google Scholar 

  51. A. Parvizi, K.W. Garrett, J.E. Bailey, Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13, 195–201 (1978)

    Article  Google Scholar 

  52. A. Parvizi, J.E. Bailey, On multiple transverse cracking in glass fibre epoxy cross-ply laminates. J. Mater. Sci. 13, 2131–2136 (1978)

    Article  Google Scholar 

  53. D.L. Flaggs, M.H. Kural, Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates. J. Compos. Mater. 16, 103–116 (1982)

    Article  Google Scholar 

  54. F.K. Chang, M.H. Chen, The in situ ply shear strength distribution in graphite/epoxy laminated composites. J. Compos. Mater. 21, 708–733 (1987)

    Article  Google Scholar 

  55. L. Boniface, P.A. Smith, M.G. Bader, Transverse ply cracking in cross-ply CFRP laminates—Initiation or propagation controlled? J. Compos. Mater. 31 (11), 1080–1112 (1997)

    Article  Google Scholar 

  56. P.P. Camanho, C.G. Dávila, S.T. Pinho, L. Iannucci, P. Robinson, Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A Appl. Sci. 37, 165–176 (2006)

    Article  Google Scholar 

  57. E. Abisset, F. Daghia, P. Ladevèze, On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. 42, 1515–1524 (2011)

    Article  Google Scholar 

  58. H. Saito, H. Takeuchi, I. Kimpara, Experimental evaluation of the damage growth restraining in 90 layer of thin-ply CFRP cross-ply laminates. Adv. Compos. Mater. 21, 57–66 (2012)

    Google Scholar 

  59. T.A. Sebaey, J. Costa, P. Maimí, Y. Batista, N. Blanco, J.A. Mayugo, Measurement of the in situ transverse tensile strength of composite plies by means of the real time monitoring of microcracking. Compos. Part B Eng. 65, 40–46 (2014)

    Article  Google Scholar 

  60. G.J. Dvorak, N. Laws. Analysis of progressive matrix cracking in composite laminates II. First ply failure. J. Compos. Mater. 21, 309–329 (1987)

    Article  Google Scholar 

  61. D.L. Flaggs, Prediction of tensile matrix failure in composite laminates. J. Compos. Mater. 19, 29–50 (1985)

    Article  Google Scholar 

  62. F.K. Chang, K.Y. Chang, Post-failure analysis of bolted composite joints in tension or shear-out mode failure. J. Compos. Mater. 21, 809–833 (1987)

    Article  Google Scholar 

  63. K.Y. Chang, S. Liu, F.K. Chang, Damage tolerance of laminated composites containing an open hole subjected to tensile loadings. J. Compos. Mater. 25, 274–301 (1991)

    Article  Google Scholar 

  64. A. Puck, H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

  65. C.G. Dávila, P.P. Camanho, C.A. Rose, Failure criteria for FRP laminates. J. Compos. Mater. 39 (4), 323–345 (2005)

    Article  Google Scholar 

  66. S.T. Pinho, C.G. Dávila, P.P. Camanho, L. Iannucci, P. Robinson, Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Tech. Rep. NASA/TM-2005-213530, NASA Langley Research Center, Hampton, Virginia (2005)

    Google Scholar 

  67. P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A thermodynamically consistent damage model for advanced composites. Tech. Rep. NASA/TM-2006-214282, NASA Langley Research Center, Hampton, Virginia, (2006)

    Google Scholar 

  68. J.A. Mayugo, P.P. Camanho, P. Maimí, C.G. Dávila, Analytical modelling of transverse matrix cracking of { ±θ∕90n}s composite laminates under multiaxial loading. Mech. Adv. Mater. Struct. 17, 237–245 (2010)

    Article  Google Scholar 

  69. P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for composite laminates: Part I — constitutive model. Mech. Mater. 39, 897–908 (2007)

    Article  Google Scholar 

  70. P.P. Camanho, M.A. Bessa, G. Catalanotti, M. Vogler, R. Rolfes, Modeling the inelastic deformation and fracture of polymer composites — Part II: smeared crack model. Mech Mater 59, 36–49 (2013)

    Article  Google Scholar 

  71. G. Catalanotti, P.P. Camanho, A.T. Marques, Three-dimensional failure criteria for fiber-reinforced laminates. Compos. Struct. 95, 63–79 (2013)

    Article  Google Scholar 

  72. P.P. Camanho, A. Arteiro, G. Catalanotti, A.R. Melro, M. Vogler, Three-dimensional invariant-based failure criteria for transversely isotropic fibre-reinforced composites, in Numerical Modelling of Failure in Advanced Composite Materials, Chap. 5, ed. by P.P. Camanho, S.R. Hallett (Woodhead Publishing, Cambridge, 2015), pp. 111–150

    Google Scholar 

  73. P.P. Camanho, M. Lambert, A design methodology for mechanically fastened joints in laminated composite materials. Compos. Sci. Technol. 66, 3004–3020 (2006)

    Article  Google Scholar 

  74. M.R. Wisnom, B. Khan, S.R. Hallett, Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites. Compos. Struct. 84, 21–28 (2008)

    Article  Google Scholar 

  75. H. Koerber, J. Xavier, P.P. Camanho, High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech. Mater. 42, 1004–1019 (2010)

    Google Scholar 

  76. P.P. Camanho, C.G. Dávila, M.F. de Moura, Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37 (16), 1415–1438 (2003)

    Article  Google Scholar 

  77. J.M. Berthelot, Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. Appl. Mech. Rev. 56 (1), 111–147 (2003)

    Article  Google Scholar 

  78. W.A. Curtin, N. Takeda, Tensile strength of fiber-reinforced composites: II. Application to polymer matrix composites. J. Compos. Mater. 32 (22), 2060–2081 (1998)

    Google Scholar 

  79. F. Tanaka, T. Okabe, H. Okuda, I.A. Kinloch, R.J. Young, Factors controlling the strength of carbon fibres in tension. Compos. Part A Appl. Sci. 57, 88–94 (2014)

    Article  Google Scholar 

  80. A.E. Scott, I. Sinclair, S.M. Spearing, A. Thionnet, A.R. Bunsell, Damage accumulation in a carbon/epoxy composite: comparison between a multiscale model and computed tomography experimental results. Compos. Part A Appl. Sci. 43, 1514–1522 (2012)

    Article  Google Scholar 

  81. Y. Swolfs, H. Morton, A.E. Scott, L. Gorbatikh, P.A.S. Reed, I. Sinclair, et al. Synchrotron radiation computed tomography for experimental validation of a tensile strength model for unidirectional fibre-reinforced composites. Compos. Part A Appl. Sci. 77, 106–113 (2015)

    Google Scholar 

  82. M. Jirásek, P. Grassl, Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng. Fract. Mech. 75, 1921–1943 (2008)

    Article  Google Scholar 

  83. E.V. Iarve, M.R. Gurvich, D.H. Mollenhauer, C.A. Rose, C.G. Dávila, Mesh-independent matrix cracking and delamination modeling in laminated composites. Int. J. Numer. Methods Eng. 88, 749–773 (2011)

    Article  Google Scholar 

  84. M. Vogler, R. Rolfes, P.P. Camanho, Modeling the inelastic deformation and fracture of polymer composites — Part I: plasticity model. Mech. Mater. 59, 50–64 (2013)

    Article  Google Scholar 

  85. P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for composite laminates: Part II — computational implementation and validation. Mech. Mater. 39, 909–919 (2007)

    Article  Google Scholar 

  86. M.J. Hinton, P.D. Soden, Predicting failure in composite laminates: the background to the exercise. Compos. Sci. Technol. 58, 1001–1010 (1998)

    Article  Google Scholar 

  87. P.D. Soden, M.J. Hinton, A.S. Kaddour, A comparison of the predictive capabilities of current failure theories for composite laminates. Compos. Sci. Technol. 58, 1225–1254 (1998)

    Article  Google Scholar 

  88. M.J. Hinton, A.S. Kaddour, P.D. Soden, Evaluation of failure prediction in composite laminates: background to ‘part B’ of the exercise. Compos. Sci. Technol. 62, 1481–1488 (2002)

    Article  Google Scholar 

  89. M.J. Hinton, A.S. Kaddour, P.D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos. Sci. Technol. 62, 1725–1797 (2002)

    Article  Google Scholar 

  90. M.J. Hinton, A.S. Kaddour, P.D. Soden, Evaluation of failure prediction in composite laminates: background to ‘part C’ of the exercise. Compos. Sci. Technol. 64, 321–327 (2004)

    Article  Google Scholar 

  91. A.S. Kaddour, M.J. Hinton, P.D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64, 449–476 (2004)

    Article  Google Scholar 

  92. M.J. Hinton, A.S. Kaddour, P.D. Soden, A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence. Compos. Sci. Technol. 64, 549–558 (2004)

    Article  Google Scholar 

  93. S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5 (1), 58–80 (1971)

    Article  Google Scholar 

  94. A. Puck, H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)

    Article  Google Scholar 

  95. C.G. Dávila, P.P. Camanho, Failure criteria for FRP laminates in plane stress. Tech. Rep. NASA/TM-2003-212663, NASA Langley Research Center, Hampton, Virginia (2003)

    Google Scholar 

  96. S.T. Pinho, L. Iannucci, P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: development. Compos. Part A Appl. Sci. 37, 63–73 (2006)

    Article  Google Scholar 

  97. P.J. Hine, R.A Duckett, A.S. Kaddour, M.J. Hinton, G.M. Wells, The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites. Compos. Part A Appl. Sci. 36, 279–289 (2005)

    Google Scholar 

  98. A.J.M. Spencer, Kinematic constraints, constitutive equations and failure rules for anisotropic materials, in Applications of Tensor Functions in Solid Mechanics, Chap. 10, ed. by J.P. Boehler. CISM Courses and Lectures, vol. 292 (Springer, Wien, 1987), pp. 187–201

    Google Scholar 

  99. M.A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures, vol. 1 (Wiley, Chichester, 1991)

    Google Scholar 

  100. S.W. Tsai, Strength and Life of Composites (Composites Design Group, Department of Aeronautics and Astronautics, Stanford University, 2008)

    Google Scholar 

  101. H. Thom, A review of the biaxial strength of fibre-reinforced plastics. Compos. Part A Appl. Sci. 29A, 869–886 (1998)

    Article  Google Scholar 

  102. A. Turon, P.P. Camanho, J. Costa, C.G. Dávila, A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)

    Article  Google Scholar 

  103. C.G. Dávila, C.A. Rose, P.P. Camanho, A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int. J. Fract. 158, 211–223 (2009)

    Article  Google Scholar 

  104. S.T. Pinho, P. Robinson, L. Iannucci, Fracture toughness of the tensile and compressive fiber failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006)

    Article  Google Scholar 

  105. G. Catalanotti, J. Xavier, P.P. Camanho, Measurement of the compressive crack resistance curve of composites using the size effect law. Compos. Part A Appl. Sci. 56, 300–307 (2014)

    Article  Google Scholar 

  106. G. Catalanotti, A. Arteiro, M. Hayati, P.P. Camanho, Determination of the mode I crack resistance curve of polymer composites using the size-effect law. Eng. Fract. Mech. 118, 49–65 (2014)

    Article  Google Scholar 

  107. G.H. Erçin, Stress gradient effects in laminated composites. Ph.D. thesis, Faculdade de Engenharia, Universidade do Porto, Porto (2013)

    Google Scholar 

  108. A.A.P.D. Branco, Virtual testing of advanced polymer composite materials. Master’s thesis, Faculdade de Engenharia, Universidade do Porto, Porto (2015)

    Google Scholar 

  109. P.P. Camanho, P. Maimí, C.G. Dávila, Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67, 2715–2727 (2007)

    Article  Google Scholar 

  110. E.V. González, P. Maimí, A. Turon, P.P. Camanho, J. Costa, Simulation of delamination by means of cohesive elements using an explicit finite element code. CMC Comput. Mater. Continua 9 (1), 51–92 (20096)

    Google Scholar 

  111. J.M. Whitney, R.J. Nuismer, Stress fracture criteria for laminated composites containing stress concentrations. J Compos. Mater 8, 253–265 (1974)

    Article  Google Scholar 

  112. T.H. Walker, W.B. Avery, L.B. Ilcewicz, C.C. Poe Jr., C.E. Harris, Tension fracture of laminates for transport fuselage. Part I: material screening, in, Proceedings of the 9th DoD/NASA/FAA Conference on Fibrous Composites in Structural Design, vol. II, ed. by J.R. Soderquist, L.M. Neri, H.L. Bohon (Lake Tahoe, Nevada, 1991), pp. 747–787

    Google Scholar 

  113. D. Leguillon, Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solid 21, 61–72 (2002)

    Google Scholar 

  114. P. Cornetti, N. Pugno, A. Carpinteri, D. Taylor, Finite fracture mechanics: a coupled stress and energy failure criterion. Eng. Fract. Mech. 73, 2021–2033 (2006)

    Article  Google Scholar 

  115. P.P. Camanho, G.H. Erçin, G. Catalanotti, S. Mahdi, P. Linde, A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos. Part A Appl. Sci. 43, 1219–1225 (2012)

    Article  Google Scholar 

  116. S.C. Tan, Stress Concentrations in Laminated Composites (Technomic, Lancaster, 1994)

    Google Scholar 

  117. J.C. Newman Jr., A nonlinear fracture mechanics approach to the growth of small cracks, in Proceedings of the AGARD Conference, vol. 328(6) (1983), pp. 1–26

    Google Scholar 

  118. A. Arteiro, G. Catalanotti, J. Xavier, P.P. Camanho, Notched response of non-crimp fabric thin-ply laminates: analysis methods. Compos. Sci. Technol. 88, 165–171 (2013)

    Article  Google Scholar 

  119. D.L. Chen, B. Weiss, R. Stickler, A new geometric factor formula for a center cracked plate tensile specimen of finite width. Int. J. Fract. 55, R3–R8 (1992)

    Article  Google Scholar 

  120. Z. Suo, G. Bao, B. Fan, T.C. Wang, Orthotropy rescaling and implications for fracture in composites. Int. J. Solids Struct. 28 (2), 235–248 (1991)

    Article  Google Scholar 

  121. G. Bao, S. Ho, Z. Suo, B. Fan, The role of material orthotropy in fracture specimens for composites. Int. J. Solids Struct. 29 (9), 1105–1116 (1992)

    Article  Google Scholar 

  122. B.G. Green, M.R. Wisnom, S.R. Hallett, An experimental investigation into the tensile strength scaling of notched composites. Compos. Part A Appl. Sci. 38, 867–878 (2007)

    Article  Google Scholar 

  123. A. Arteiro, G. Catalanotti, J. Xavier, P.P. Camanho, Notched response of non-crimp fabric thin-ply laminates. Compos. Sci. Technol. 79, 97–114 (2013)

    Article  Google Scholar 

  124. MIL-HDBK-17-3F, Composite Materials Handbook, volume 3. Polymer Matrix Composites Materials Usage, Design and Analysis. Department of Defense Handbook (2002)

    Google Scholar 

  125. T.W. Coats, C.E. Harris, A progressive damage methodology for residual strength predictions of notched composite panels. Tech. Rep. NASA/TM-1998-207646, NASA Langley Research Center, Hampton, Virginia (1998)

    Google Scholar 

  126. T.W. Coats, C.E. Harris, A progressive damage methodology for residual strength predictions of notched composite panels. J. Compos. Mater. 33 (23), 2193–2224 (1999)

    Article  Google Scholar 

  127. M.A. Caminero, M. Lopez-Pedrosa, C. Pinna, C. Soutis, Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Compos. Part B Eng. 53, 76–91 (2013)

    Article  Google Scholar 

  128. A. Arteiro, G. Catalanotti, J. Xavier, P.P. Camanho, Large damage capability of non-crimp fabric thin-ply laminates. Compos. Part A Appl. Sci. 63, 110–122 (2014)

    Article  Google Scholar 

  129. G. Catalanotti, P.P. Camanho, A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Compos. Sci. Technol. 76, 69–76 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022—SciTech—Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro P. Camanho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camanho, P.P., Arteiro, A. (2017). Analysis Models for Polymer Composites Across Different Length Scales. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_9

Download citation

Publish with us

Policies and ethics