Skip to main content

Carbon Fibre-Reinforced Polymer Laminates with Nanofiller-Enhanced Multifunctionality

  • Chapter
  • First Online:

Abstract

The demand for high-strength and high-toughness material with lightweight and multifunctionality has always been a matter of concern. The specific properties of carbon fibre-reinforced polymer (CFRP) composites make it a promising candidate for various structural and functional applications. In this chapter, we review the performance of CFRP composites with various nanofillers (1) to enhance mechanical behaviours as structural materials, including interlaminar strength and toughness, impaction and fatigue performance, and (2) to enable/enhance multifunctional behaviour, including thermal conductivity, electrical conductivity and other performance. Overall, this discussion provides a broad overview and technically viable routes to obtain particular combinations of various mechanical and functional behaviours of CFRP with nanofillers included. Future exploration may involve using hybrid nanofillers to achieve multifunctionality and the application of electrospinning and 3D printing technologies for cost-effective and large-scale manufacture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Chung, Carbon Fiber Composites (Butterworth-Heinemann, Waltham, MA, 1994)

    Google Scholar 

  2. S.C. Tjong, Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 73–197 (2006)

    Article  Google Scholar 

  3. X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R 49, 89–112 (2005)

    Article  Google Scholar 

  4. Y. Tang, L. Ye, Z. Zhang, K. Friedrich, Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—a review. Compos. Sci. Technol. 86, 26–37 (2013)

    Article  Google Scholar 

  5. R.K. Prusty, D.K. Rathore, B.C. Ray, Assessment and modification strategies for improved interlaminar properties of advanced FRP composites: a review. J Adv. Res. Manufac.Mate. Sci. Metallurg. Eng. 1, 1–25 (2014)

    Google Scholar 

  6. B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, K. Schulte, Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 3115–3125 (2006)

    Article  Google Scholar 

  7. W. Bouhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009)

    Article  Google Scholar 

  8. H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, A. Bismarck, Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20, 4751–4762 (2010)

    Article  Google Scholar 

  9. T.W. Chou, L. Gao, E.T. Thostenson, Z. Zhang, J.H. Byun, An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 70, 1–19 (2010)

    Article  Google Scholar 

  10. A.M. Diez-Pascual, M. Naffakh, C. Marco, M.A. Gomez-Fatou, G.J. Ellis, Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: a review. Curr. Opin. Solid State Mater. Sci. 18, 62–80 (2014)

    Article  Google Scholar 

  11. M. Arai, J. Hirokawa, Y. Hanamura, H. Ito, M. Hojo, M. Quaresimin, Characteristic of mode I fatigue crack propagation of CFRP laminates toughened with interlayer. Compos. Part B 65, 26–33 (2014)

    Article  Google Scholar 

  12. B. Ashrafi, J. Guan, V. Mirjalili, Y. Zhang, L. Chun, P. Hubert, B. Simard, C.T. Kingston, O.~Bourne, A. Johnston, Enhancement of mechanical performance of epoxy/cabob fibre laminate composites using single-walled carbon nanotubes. Compos. Sci. Technol. 71, 1569–1578 (2011)

    Article  Google Scholar 

  13. E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H.T. Hahn, T.W. Chou, M.E.~Itkis, R.C. Haddon, Multiscale carbon nanotube carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007)

    Article  Google Scholar 

  14. E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. Part A 39, 1065–1070 (2008)

    Article  Google Scholar 

  15. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. van Vuure, L. Gorbatikh, P.~Moldenaers, I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fibre/epoxy composites. Carbon 47, 2914–2923 (2009)

    Article  Google Scholar 

  16. L. Gorbatikh, S.V. Lomov, I. Verpoest, Nano-engineered composites: a multiscale approach for adding toughness to fibre reinforced composites. Procedia Eng. 10, 3252–3258 (2011)

    Article  Google Scholar 

  17. S.C. Joshi, V. Dikshit, Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion. J. Compos. Mater. 46, 665–675 (2011)

    Article  Google Scholar 

  18. K.L. Kepple, G.P. Sanborn, P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46, 2026–2033 (2008)

    Article  Google Scholar 

  19. J.B. Knoll, B.T. Riecken, N. Kosmann, S. Chandrasekaran, K. Schulte, B. Fiedler, The effect of carbon nanoparticles on the fatigue performance of carbon fibre reinforced epoxy. Compos. Part A 67, 233–240 (2014)

    Article  Google Scholar 

  20. S. Rahmanian, K.S. Thean, A.R. Suraya, M.A. Shazed, M.A. Mohd Salleh, H.M. Yusoff, Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater. Des. 43, 10–16 (2013)

    Article  Google Scholar 

  21. G. Romhany, G. Szebenyi, Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polym. Lett. 3, 145–151 (2009)

    Article  Google Scholar 

  22. R.J. Sager, P.J. Klein, D.C. Davis, D.C. Lagoudas, G.L. Warren, H.J. Sue, Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/epoxy interleaf films. J.~Appl. Polym. Sci. 121, 2394–2405 (2011)

    Article  Google Scholar 

  23. Thaker PR. Processing and characterisation of carbon nanotubes reinforced epoxy resin based multi-scale multi-functional composites. Ph.D. Thesis, Texas A&M University, 2009

    Google Scholar 

  24. X. Xu, Z. Zhou, Y. Hei, B. Zhang, J. Bao, X. Chen, Improving compression-after-impact performance of carbon-fiber composites by CNTs/thermoplastic hybrid film interlayer. Compos. Sci. Technol. 95, 75–81 (2014)

    Article  Google Scholar 

  25. T. Yokozeki, Y. Iwahori, M. Ishibashi, T. Yanagisawa, K. Imai, M. Arai, T. Takahashi, K.~Enomoto, Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Compos. Sci. Technol. 69, 2268–2273 (2009)

    Article  Google Scholar 

  26. G.J. Zhang, The effect of carbon fibres and carbon nanotubes on the mechanical properties of polyimide composites. Mech. Compos. Mater. 47, 447–450 (2011)

    Article  Google Scholar 

  27. H. Zhang, Y. Liu, M. Kuwata, E. Bilotti, T. Peijs, Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. Part A 70, 102–110 (2015)

    Article  Google Scholar 

  28. V. Kostopoulos, P. Tsotra, P. Karapappas, S. Tsantzalis, A. Vavouliotis, T.H. Loutas, A.~Paipetis, K. Friedrich, T. Tanimoto, Model I interlaminar fracture of CNF or/and PZT doped CFRPs via acoustic emission monitoring. Compos. Sci. Technol. 67, 822–828 (2007)

    Article  Google Scholar 

  29. M. Quaresimin, R.J. Varley, Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Compos. Sci. Technol. 68, 718–726 (2008)

    Article  Google Scholar 

  30. P. Akangah, S. Lingaiah, K. Shivakumar, Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Compos. Struct. 92, 1432–1439 (2010)

    Article  Google Scholar 

  31. V. Kostopoulos, P. Karapappas, T. Loutas, A. Vavouliotis, A. Paioetis, P. Tsotra, Interlaminar fracture toughness of carbon fibre-reinforced polymer laminates with nano- and micro-fillers. Strain 47, e269–e282 (2011)

    Article  Google Scholar 

  32. K. Molnar, E. Kostakova, L. Meszaros, The effect of needleless electrospun nanofibrous interleaves on mechanical properties of carbon fabrics/epoxy laminates. Express Polym. Lett. 8, 62–72 (2014)

    Article  Google Scholar 

  33. M.M. Rahman, M. Hosur, K.T. Hsiao, L. Wallace, S. Jeelani, Low velocity impact properties of carbon nanofibers integrated carbon fiber/epoxy hybrid composites manufactured by OOA-VBO process. Compos. Struct. 120, 32–40 (2015)

    Article  Google Scholar 

  34. Y. Shao, T. Yashiro, K. Okubo, T. Fujii, Effect of cellulose nano fiber (CNF) on fatigue performance of carbon fiber fabric composites. Compos. Part A 76, 244–254 (2015)

    Article  Google Scholar 

  35. J. Zhang, T. Lin, X. Wang, Electrospun nanofiber toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofiber diameter and interlayer thickness. Compos. Sci. Technol. 70, 1660–1666 (2010)

    Article  Google Scholar 

  36. I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J. Mater. Process. Technol. 167, 283–293 (2005)

    Article  Google Scholar 

  37. Y.A. Dzenis, D.H. Reneker, Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces. U.S. Patent 6265333, USA, 2001

    Google Scholar 

  38. Y. Fukushima, S. Inagaki, Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J. Incl. Phenom. 5, 473–482 (1987)

    Article  Google Scholar 

  39. O. Becker, R.J. Varley, G.P. Simon, Use of layered silicates to supplementarily toughen high performance epoxy-carbon fiber composites. J. Mater. Sci. Lett. 22, 1411–1414 (2003)

    Article  Google Scholar 

  40. D. Dean, A.M. Obore, S. Richmond, E. Nyairo, Multiscale fibre-reinforced nanocomposites: synthesis, processing and properties. Compos. Sci. Technol. 66, 2135–2142 (2006)

    Article  Google Scholar 

  41. K. Iqbal, S.U. Khan, A. Munir, J.K. Kim, Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Compos. Sci. Technol. 69, 1949–1957 (2009)

    Article  Google Scholar 

  42. N.A. Siddiqui, R.S.C. Woo, J.K. Kim, C.C.K. Leung, A. Munir, Model I interlaminar fracture behaviour and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. Part A 38, 449–460 (2007)

    Article  Google Scholar 

  43. J.F. Timmerman, B.S. Hayes, J.C. Seferis, Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos. Sci. Technol. 62, 1249–1258 (2002)

    Article  Google Scholar 

  44. Y. Xu, S.V. Hoa, Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68, 854–861 (2008)

    Article  Google Scholar 

  45. S. Sprenger, C. Eger, A.J. Kinloch et~al., Nanotoughening of epoxies. Proceedings of Stick! Conference 2003, Nuernberg, Germany, Vincentz Verlag, 9 April 2003

    Google Scholar 

  46. T.H. Hsieh, A.J. Kinloch, K. Masania, J.S. Lee, A.C. Taylor, S. Sprenger, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater. Sci. 45, 1193–1210 (2010)

    Article  Google Scholar 

  47. S. Sprenger, Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles. J. Mater. Sci. 49, 2391–2402 (2014)

    Article  Google Scholar 

  48. Y. Tang, L. Ye, D. Zhang, S. Deng, Characterisation of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10 wt% and 20 wt% silica nanoparticles in matrix resins. Compos. Part A 42, 1943–1950 (2011)

    Article  Google Scholar 

  49. Y. Zeng, H.Y. Liu, Y.-W. Mai, X.S. Du, Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos. Part B 43, 90–94 (2012)

    Article  Google Scholar 

  50. S. Sprenger, Epoxy resin composites with surface-modified silicon dioxide nanoparticles: a~review. J. Appl. Polym. Sci. 130, 1421–1428 (2013)

    Article  Google Scholar 

  51. C.M. Manjunatha, A.C. Taylor, A.J. Kinloch, S. Sprenger, The effect of rubber micro-particles and silica nano-particles on the tensile fatigue behaviour of a glass-fibre epoxy composite. J.~Mater. Sci. 44, 342–345 (2009)

    Article  Google Scholar 

  52. C. Eger, S. Sprenger, Polymere Epoxidharz-Zusammensetzung. German Patent DE50304047, filing date: 03/12/2003 (2004)

    Google Scholar 

  53. T. Ogasawara, Y. Ishida, T. Kasai, Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos. Sci. Technol. 69, 2002–2007 (2009)

    Article  Google Scholar 

  54. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  55. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Article  Google Scholar 

  56. P. He, B. Huang, L. Liu, Q. Huang, T. Chen, Preparation of multiscale graphene oxide-carbon fabric and its effect on mechanical properties of hierarchical epoxy resin composite. Polym. Compos. (2014). doi:10.1002/pc.23321

    Google Scholar 

  57. E. Kandare, A.A. Khatibi, S. Yoo, R. Wang, J. Ma, P. Olivier, N. Gleizes, C.H. Wang, Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos. Part A 69, 72–82 (2015)

    Article  Google Scholar 

  58. E. Mannov, H. Schmutzler, S. Chandrasekaran, C. Viets, S. Buschhorn, F. Tolle, R. Mulhaupt, K. Schulte, Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos. Sci. Technol. 87, 36–41 (2013)

    Article  Google Scholar 

  59. X. Yang, Z. Wang, M. Xu, R. Zhao, X. Liu, Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater. Des. 44, 74–80 (2013)

    Article  Google Scholar 

  60. D. Zhang, L. Ye, S. Deng, J. Zhang, Y. Tang, Y. Chen, CF/EP composite laminates with carbon black and copper chloride for improved electrical conductivity and interlaminar fracture toughness. Compos. Sci. Technol. 72, 412–420 (2012)

    Article  Google Scholar 

  61. X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, L. Yu, Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces 4, 1543–1552 (2012)

    Article  Google Scholar 

  62. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72, 1459–1476 (2012)

    Article  Google Scholar 

  63. Y. Ye, H. Chen, J. Wu, C.M. Chan, Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix. Compos. Sci. Technol. 71, 717–723 (2011)

    Article  Google Scholar 

  64. A.M. Diez-Pascual, M. Naffakh, Inorganic nanoparticle-modified poly(phenylene sulphide)/carbon fibre laminates: thermomechanical behaviour. Materials 6, 3171–3193 (2013)

    Article  Google Scholar 

  65. H. Qian, A. Bismarck, E.S. Greenhalgh, M.S.P. Shaffer, Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos. Part A 41, 1107–1114 (2010)

    Article  Google Scholar 

  66. H. Qian, A. Bismarck, E.S. Greenhalgh, M.S.P. Shaffer, Carbon nanotube grafted silica fibres: characterising the interface at the single fibre level. Compos. Sci. Technol. 70, 393–399 (2010)

    Article  Google Scholar 

  67. H.P. Kan, Enhanced reliability prediction methodology for impact damaged composite structures. Report DOT/FAA/AR-97-79, October (1998)

    Google Scholar 

  68. S.A. Hitchen, R.M.J. Kemp, The effects of stacking sequence on impact damage in a carbon fibre/epoxy composite. Composites 26, 207–214 (1995)

    Article  Google Scholar 

  69. E. Fuoss, P.V. Straznicky, C. Poon, Effects of stacking sequence on the impact resistance in composite laminates—Part I: parametric study. Compos. Struct. 41, 67–77 (1998)

    Article  Google Scholar 

  70. D.D.R. Cartie, P.E. Irving, Effect of resin and fibre properties on impact and compression after impact performance of CFRP. Composites: Part A 33, 483–493 (2002)

    Article  Google Scholar 

  71. G.A.O. Davies, X. Zhang, G. Zhou, S. Watson, Numerical modelling of impact damage. Composites 25, 342–350 (1994)

    Article  Google Scholar 

  72. M.O.W. Richardson, M.J. Wishart, Review of low-velocity impact properties of composite materials. Compos. Part A 27A, 1123–1131 (1996)

    Article  Google Scholar 

  73. Z. Hashin, A. Rotem, A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–456 (1973)

    Article  Google Scholar 

  74. K. Schulte, C.H. Baron, Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos. Sci. Technol. 36, 349–356 (1989)

    Google Scholar 

  75. M.C. Koecher, J.H. Pande, S. Merkley, S. Henderson, D.T. Fullwood, A.E. Bowden, Piezoresistive in-situ stain sensing of composite laminate structures. Compos. Part B 69, 534–541 (2015)

    Article  Google Scholar 

  76. E.T. Thostenson, T.W. Chou, Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self-healing. Adv. Mater. 18, 2837–2841 (1996)

    Article  Google Scholar 

  77. L. Boger, M.H.G. Wichmann, L.O. Meyer, K. Schulte, Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposites epoxy matrix. Compos. Sci. Technol. 68, 1886–1894 (2008)

    Article  Google Scholar 

  78. Y. Lin, M. Gigliotti, M.C. Lafarie-Frenot, J. Bai, D. Marchand, D. Mellier, Experimental study to assess the effect of carbon nanotube addition on the through-thickness electrical conductivity of CFRP laminates for aircraft applications. Compos. Part B 76, 31–37 (2015)

    Article  Google Scholar 

  79. E.F. Reia da Costa, A.A. Skordos, I.K. Partidge, A. Rezai, RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos. Part A 43, 593–602 (2012)

    Article  Google Scholar 

  80. S. Hida, T. Hori, T. Shiga, J. Elliott, J. Shiomi, Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int. J. Heat Mass Transf. 67, 1024–1029 (2013)

    Article  Google Scholar 

  81. D.J. Radcliffe, H.M. Rosenberg, The thermal conductivity of glass-fibre and carbon-fibre/epoxy composites from 2 to 80 K. Cryogenics 22(5), 245–249 (1982)

    Article  Google Scholar 

  82. Wikipedia.org. https://en.wikipedia.org/wiki/Rule_of_mixtures. Accessed 9/5/2016

  83. J.R. Gaier, Y. YoderVandenberg, S. Berkebile, H. Stueben, F. Balagadde, The electrical and thermal conductivity of woven pristine and intercalated graphite fibre-polymer composites. Carbon 41, 2187–2193 (2003)

    Article  Google Scholar 

  84. H. Jopek, T. Strek, Optimization of the effective thermal conductivity of a composite, in Convection and Conduction Heat Transfer, ed. by A. Ahsan (Intech, Croatia, 2011), pp. 197–214

    Google Scholar 

  85. G. Gkikas, D.D. Douka, N.M. Barkoula, A.S. Paipetis, Nano-enhanced composite materials under thermal shock and environmental degradation: a durability study. Compos. Part B 70, 206–214 (2015)

    Article  Google Scholar 

  86. A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger, D. Egan, The interlaminar toughness of carbon-fibre reinforced plastic composites using “hybrid-toughened” matrices. J. Mater. Sci. 41, 5043–5046 (2006)

    Article  Google Scholar 

  87. S.A. Xu, G.T. Wang, Y.W. Mai, Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties and fracture toughness of epoxy composites. J. Mater. Sci. 48, 3546–3556 (2013)

    Article  Google Scholar 

  88. K.J. Bowles, S. Frimpong, Void effects on the interlaminar shear strength of unidirectional graphite-fibre-reinforced composites. J. Compos. Mater. 26, 1487–1509 (1992)

    Article  Google Scholar 

  89. C.L. Lee, K.H. Wei, Resin transfer molding (RTM) process of a high performance epoxy resin. II: effects of process variables on the physical, static and dynamic mechanical behaviour. Polym. Eng. Sci. 40, 935–943 (2000)

    Article  Google Scholar 

  90. B.G. Compton, J.A. Lewis, 3D printing: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014)

    Article  Google Scholar 

  91. J.R. Tumbleston, D. Shirvanyants et al., Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015)

    Article  Google Scholar 

  92. S. Pimenta, S.T. Pinho, Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag. 31, 378–392 (2011)

    Article  Google Scholar 

  93. D. Bello, B.L. Wardle, N. Yamamoto, R.G. deVilloria, E.J. Garcia, A.K. Hart, K. Ahn, M.J. Ellenbecker, M. Hallock, Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J. Nanopart. Res. 11, 231–249 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Y Tang and L Ye are grateful for the support of the Premier’s Research and Industry Fund (PRIF) with a Catalyst Research Grant and the Australian Research Council (ARC) with a Discovery Project (DP) grant for the research work, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youhong Tang or Lin Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Han, W., Tang, Y., Ye, L. (2017). Carbon Fibre-Reinforced Polymer Laminates with Nanofiller-Enhanced Multifunctionality. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_8

Download citation

Publish with us

Policies and ethics