Skip to main content

A Nano-micro-macro-multiscale Model for Progressive Failure Prediction in Advanced Composites

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

The bottleneck for inserting new and improved polymer matrix composites (PMC) is the overwhelming amount of testing required to incorporate new material into the Design Allowables Database (DAD). The development of the DAD requires evaluation of multiple batches of composites with the associated construction of very large mechanical and other physical properties databases. Also, to quantify uncertainty in the structural performance, (1) numerous subcomponents may have to be fabricated requiring expensive tooling, and (2) one must then perform expensive tests on these elements to determine their long-term performance. In this context, Integrated Computational Materials Science and Engineering (ICMSE) provides a methodology to support materials development without recourse to expensive trial-and-error approach to materials fabrication and characterization. The motivation for this chapter is that design requirements and knockdown factors are limiting our ability to exploit advanced composite and nanostructured composite materials for system-level payoffs. While there has been a large body of research conducted in atomistic simulation of crystalline metallic materials, a large technology gap exists in the multiscale simulation of amorphous polymeric materials and their composites. This chapter is a description of a methodology for fundamentally addressing failure in a polymer composite. The nanoscale is addressed first, to highlight incorporation of damage using both strength- and fracture-based criterions and problems associated when modeling a polymer system, followed by a discussion of microscale modeling which receives information from the nanoscale using homogenized properties. This in turn iteratively interacts with the macroscale to provide global strength estimates of a composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.K. Valavala, T.C. Clancy, G.M. Odegard, T.S. Gates, Nonlinear multiscale modeling of polymer materials. Int. J. Solids Struct. 44, 1161–1179 (2007)

    Article  Google Scholar 

  2. V.A. Buryachenko, A. Roy, K. Lafdi, K.L. Anderson, S. Chellapilla, Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation. Compos. Sci. Technol. 65, 2435–2465 (2005)

    Article  Google Scholar 

  3. J.C. Riddick, S.J.V. Frankland, T.S. Gates, Multiscale analysis of delamination of carbon fiber-epoxy laminates with carbon nanotubes, in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1–4 May 2006

    Google Scholar 

  4. A.P. Awasthi, D.C. Lagoudas, D.C. Hammerand, Modeling of interface behavior in carbon nanotube composites, in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1–4 May 2006

    Google Scholar 

  5. K.E. Wise, State of the art assessment of simulation in advanced materials development. NASA-Technical Memorandum (TM), TM No. 215118 (2008)

    Google Scholar 

  6. E.B. Tadmor, R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  7. F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Concurrent coupling of length scales: methodology and application. Phys. Rev. B 60(4), 2391–2403 (1999)

    Article  Google Scholar 

  8. S. Ogata, E. Lidorikis, F. Shimojo et~al., Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun. 138, 143–154 (2001)

    Google Scholar 

  9. G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, 249–274 (2003)

    Article  Google Scholar 

  10. W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (Wiley, UK, 2006)

    Book  Google Scholar 

  11. J. Ma, H. Lu, B. Wang et~al., Multiscale simulation using generalized interpolation material point (GIMP) method and molecular dynamics (MD). Comput. Model. Eng. Sci. 14(2), 101–117 (2006)

    Google Scholar 

  12. E. Saether, V. Yamakov, E. Glaessgen, An embedded statistical method for coupling molecular dynamics and finite element analyses. Int. J. Numer. Methods Eng. 78, 1292–1319 (2009)

    Article  Google Scholar 

  13. S. Roy, M. Benjamin, Modeling of permeation and damage in graphite/epoxy laminates for cryogenic fuel storage. Compos. Sci. Technol. 64, 2051–2065 (2004)

    Article  Google Scholar 

  14. M. Paley, J. Aboudi, Micromechanical analysis of composites by the generalized cell model. Mech. Mater. 14, 127–139 (1992)

    Article  Google Scholar 

  15. A. Kumar, S. Li, S. Roy et~al., Fracture properties of nanographene reinforced EPON 862 thermoset polymer system. Compos. Sci. Technol. 114, 87–93 (2015)

    Google Scholar 

  16. A.R. Leach, Molecular Modelling: Principles and Applications (Addison Wesley Longman Ltd, Harlow, 1996)

    Google Scholar 

  17. K. Chenoweth, A.C.T. van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008)

    Article  Google Scholar 

  18. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  19. S.J. Weiner, P.A. Kollman, D.A. Case et~al., A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106(3), 765–784 (1984)

    Google Scholar 

  20. E.M. Duffy, P.J. Kowalczyk, W.L. Jorgensen, Do denaturants interact with aromatic hydrocarbons in water. J. Am. Chem. Soc. 115(20), 9271–9275 (1993)

    Article  Google Scholar 

  21. R. Talreja, Continuum modelling of damage in ceramic matrix composites. Mech. Mater. 12(2), 165–180 (1991)

    Article  Google Scholar 

  22. S. Roy, A. Srivastav, Multiscale modeling of progressive failure in polymer nanocomposites using nanaoscale informed damage mechanics. J. Mech. Mater. Struct. (2015). doi:10.1080/15376494.2015.1101513

    Google Scholar 

  23. G.M. Odegard, B.D. Jensen, S. Gowtham et~al., Predicting mechanical response of crosslinked epoxy using ReaxFF. Chem. Phys. Lett. 591, 175–178 (2014)

    Google Scholar 

  24. R.E. Jones, J.A. Zimmerman, The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. J. Mech. Phys. Solids 58(9), 1318–1337 (2010)

    Article  Google Scholar 

  25. R.E. Jones, J.A. Zimmerman, J. Oswald, T. Belytschko, An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields. J. Phys. Condens. Matter 23, 015002 (2011)

    Article  Google Scholar 

  26. R.J. Hardy, Formulas for determining local properties in molecular dynamics simulations: shock waves. J. Chem. Phys. 76(1), 622–628 (1982)

    Article  Google Scholar 

  27. S. Roy, A.R. Akepati, Determination of atomistic J-integral of graphene sheet using the molecular dynamics method. Compos. Interfaces 20(6), 431–442 (2013)

    Article  Google Scholar 

  28. P. Zhang, L. Ma, F. Fan et~al., Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014)

    Google Scholar 

  29. P. Klein, H. Gao, Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng. Fract. Mech. 61(1), 21–48 (1998)

    Article  Google Scholar 

  30. S.G. Bardenhagen, E.M. Kober, The generalized interpolation material point method. Comput. Model. Eng. Sci. 5, 477–495 (2004)

    Google Scholar 

  31. R. Krueger, Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  32. Y. Guo, J.A. Nairn, Calculation of J-integral and stress intensity factors using the material point method. CMES. 10, 1–4 (2004)

    Google Scholar 

  33. S. Pfaller, M. Rahimi, G. Possart et~al., An arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Comput. Methods Appl. Mech. Eng. 260, 109–129 (2013)

    Google Scholar 

  34. S.H. Cheng, C.T. Sun, Size-dependent fracture toughness of nanoscale structures: crack-tip stress approach in molecular dynamics. J Nanomech Micromech 4, 4 (2014)

    Article  Google Scholar 

  35. J. Aboudi, Micromechanical analysis of thermo-inelastic multiphase short-fiber composites. Compos. Eng. 5(7), 839–850 (1995)

    Article  Google Scholar 

  36. S.M. Arnold, T.E. Wilt, A.F. Saleeb, M.G. Castelli, An investigation of macro and micromechanical approaches for a model MMC system. NASA CP 19117, II, 52.1–52.12 (1993)

    Google Scholar 

  37. S.M. Arnold, M.J. Pindera, T.E. Wilt, Influence of fiber architecture on the elastic and inelastic response of metal matrix composite. Int. J. Plast. 12(4), 507–545 (1996)

    Article  Google Scholar 

  38. S.M. Arnold, B.A. Bednarcyk, T.E. Wilt, D. Trowbridge, Micromechanics Analysis Code with Generalized method of cells (MAC/GMC) User Guide Version 3.0. NASA/Technical Memorandum(TM), No. 209070 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roy, S., Kumar, A., Li, S. (2017). A Nano-micro-macro-multiscale Model for Progressive Failure Prediction in Advanced Composites. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_7

Download citation

Publish with us

Policies and ethics