Skip to main content

Nano-engineered Carbon Fibre-Reinforced Composites: Challenges and Opportunities

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

Due to their exceptional mechanical properties, carbon nanomaterials such as carbon nanotubes (CNTs) have been intensively studied as additional reinforcements in structural composites. They have created opportunities to develop advanced composites with improved mechanical performance and new functionalities. CNTs are introduced in fibre-reinforced polymers via various routes. They can be dispersed in the matrix, deposited in fibre sizing, directly grown on fibres or assembled into fibres. Composites, which simultaneously combine nanoscale and micro-scale reinforcements, are frequently referred to as hierarchical or nano-engineered composites. In the present chapter, we highlight challenges and benefits for the use of CNTs in structural fibre-reinforced polymers. The focus is on the mechanical performance of composites with nano-modified matrices, interfaces and fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Radushkevich, V.M. Lukyanovich, On the carbon structure developed during thermal decomposition of carbon monoxide on an iron contact (in Russian). Zurn Fisic Chim 26, 88–95 (1952)

    Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  3. M. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000)

    Article  Google Scholar 

  4. J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479), 602–604 (2000)

    Article  Google Scholar 

  5. W. Cho, M. Schulz, V. Shanov, Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon 72, 264–273 (2014)

    Article  Google Scholar 

  6. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  7. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010)

    Article  Google Scholar 

  8. V.S. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Stress magnification due to carbon nanotube agglomeration in composites. Compos. Struct. 133, 246–256 (2015)

    Article  Google Scholar 

  9. V. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes. Carbon 82, 184–194 (2015)

    Article  Google Scholar 

  10. V.S. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Inter-fibre stresses in composites with carbon nanotube grafted and coated fibres. Compos. Sci. Technol. 114, 79–86 (2015)

    Article  Google Scholar 

  11. T.W. Chou, L. Gao, E.T. Thostenson, Z. Zhang, J.H. Byun, An assessment of the science and technology of carbon nanotube-based fibres and composites. Compos. Sci. Technol. 70, 1–19 (2010)

    Article  Google Scholar 

  12. H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, A. Bismarck, Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20(23), 4751–4762 (2011)

    Article  Google Scholar 

  13. E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  14. C.R. Carpenter, P.H. Shipway, Y. Zhu, Electrodeposition of nickel-carbon nanotube nanocomposite coatings for enhanced wear resistance. Wear 271(9–10), 2100–2105 (2011)

    Article  Google Scholar 

  15. G. Pandey, M. Wolters, E.T. Thostenson, D. Heider, Localized functionally modified glass fibres with carbon nanotube networks for crack sensing in composites using time domain reflectometry. Carbon 50(10), 3816–3825 (2012)

    Article  Google Scholar 

  16. C.X. Wu, H.B. Lu, Y.J. Liu, J.S. Leng, Study of carbon nanotubes/short carbon fibre nanocomposites for lightning strike protection, in ed. by Z. Ounaies, J. Li. Behavior and Mechanics of Multifunctional Materials and Composites (Spie-Int Soc Optical Engineering, Bellingham, 2010)

    Google Scholar 

  17. N. Yamamoto, R. Guzman de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fibre-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012)

    Article  Google Scholar 

  18. G. Lubineau, A. Rahaman, A review of strategies for improving the degradation properties of laminated continuous-fibre/epoxy composites with carbon-based nanoreinforcements. Carbon 50, 2377–2395 (2012)

    Article  Google Scholar 

  19. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. VanVurre, L. Gorbatikh, P. Moldenaers, I. Verpoest, Influence of carbon nanotubes reinforcement on the processing and the mechanical behaviour of carbon fibre/epoxy composites. Carbon 47(12), 2914–2923 (2009)

    Article  Google Scholar 

  20. S. Tsantzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, T. Tanimoto et al., On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos. A: Appl. Sci. Manuf. 38, 1159–1162 (2007)

    Article  Google Scholar 

  21. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte, Carbon nanotube–reinforced epoxy-composites—enhanced stiffness and fracture toughness at low nanotube contents. Compos. Sci. Technol. 64, 2363–2371 (2004)

    Article  Google Scholar 

  22. I. Greenfeld, H.D. Wagner, Nanocomposite toughness, strength and stiffness: role of filler geometry. Nanocomposites 1, 3–17 (2015)

    Article  Google Scholar 

  23. H.D. Wagner, P.M. Ajayan, K. Schulte, Nanocomposite toughness from a pull-out mechanism. Compos. Sci. Technol. 83, 27–31 (2013)

    Article  Google Scholar 

  24. T. Yokozeki, Y. Iwahori, S. Ishiwata, Matrix cracking behaviors in carbon fibre/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. A: Appl. Sci. Manuf. 38(3), 917–924 (2007)

    Article  Google Scholar 

  25. T. Yokozeki, Y. Iwahori, S. Ishiwata, K. Enomoto, Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSNT-dispersed epoxy. Compos. A: Appl. Sci. Manuf. 38, 2121–2130 (2007)

    Article  Google Scholar 

  26. N. De Greef, L. Gorbatikh, A. Godara, L. Mezzo, S.V. Lomov, I. Verpoest, The effect of carbon nanotubes on the damage development in carbon fibre/epoxy composites. Carbon 49(14), 4650–4664 (2011)

    Article  Google Scholar 

  27. N. De Greef, L. Gorbatikh, S.V. Lomov, I. Verpoest, Damage development in woven carbon fibre/epoxy composites modified with carbon nanotubes under tension in the bias direction. Compos. A: Appl. Sci. Manuf. 42, 1635–1644 (2011)

    Article  Google Scholar 

  28. C.S. Grimmer, C.K.H. Dharan, High-cycle fatigue of hybrid carbon nanotube/glass fibre/polymer composites. J. Mater. Sci. 43, 4487–4492 (2008)

    Article  Google Scholar 

  29. C.S. Grimmer, C.K.H. Dharan, Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fibre/polymer composites. Compos. Sci. Technol. 70, 901–908 (2010)

    Article  Google Scholar 

  30. L. Böger, J. Sumfleth, H. Hedemann, K. Schulte, Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos. A: Appl. Sci. Manuf. 41(10), 1419–1424 (2010)

    Article  Google Scholar 

  31. L. Gorbatikh, T. Li, N. De Greef, S.V. Lomov, I. Verpoest, Effect of carbon nanotubes on fatigue life of carbon fibre/epoxy composites. 18th International Conference on Composite Materials, Jeju Island, Korea, August 21–26, 2011

    Google Scholar 

  32. L.M. Gao, T.W. Chou, E.T. Thostenson, A. Godara, Z.G. Zhang, L. Mezzo, Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes. Carbon 48(9), 2649–2651 (2010)

    Article  Google Scholar 

  33. Y.S. Song, J.R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nano—composites. Carbon 43, 1378–1385 (2005)

    Article  Google Scholar 

  34. M.A. Aravand, S.V. Lomov, I. Verpoest, L. Gorbatikh, Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: from a masterbatch to a nanocomposite. eXPRESS Polym. Lett. 8(8), 596–608 (2014)

    Article  Google Scholar 

  35. A. Haesch, T. Clarkson, J. Ivens, S.V. Lomov, I. Verpoest, L. Gorbatikh. Localization of carbon nanotubes in resin rich zones of a woven composite linked to the dispersion state. Nanocomposites 1, 206–213 (2016)

    Google Scholar 

  36. V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, A. Paipetis, Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70, 553–563 (2010)

    Article  Google Scholar 

  37. M. Siegfried, C. Tola, M. Claes, S.V. Lomov, I. Verpoest, L. Gorbatikh, Impact and residual after impact properties of carbon fibre/epoxy composites modified with carbon nanotubes. Compos. Struct. 111, 488–496 (2014)

    Article  Google Scholar 

  38. N. Yamamoto, A.J. Hart, E.J. Garcia, S.S. Wicks, H.M. Duong, A.H. Slocum, B.L. Wardle, High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibres for multifunctional enhancement of structural composites. Carbon 47(3), 551–560 (2009)

    Article  Google Scholar 

  39. E.J. Garcia, A.J. Hart, B.L. Wardle, A.H. Slocum, Fabrication and nanocompression testing of aligned carbon-nanotube-polymer nanocomposites. Adv. Mater. 19(16), 2151−+ (2007)

    Google Scholar 

  40. S.S. Wicks, R.G. de Villoria, B.L. Wardle, Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos. Sci. Technol. 70(1), 20–28 (2010)

    Article  Google Scholar 

  41. S.S. Wicks, W. Wang, M.R. Williams, B.L. Wardle, Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes. Compos. Sci. Technol. 100, 128–135 (2014)

    Article  Google Scholar 

  42. E.T. Thostenson, W.Z. Li et al., Carbon nanotube/carbon fibre hybrid multiscale composites. J. Appl. Phys. 91(9), 6034 (2002)

    Article  Google Scholar 

  43. H. Qian, A. Bismarck, E.S. Greenhalgh, G. Kalinka, M.S.P. Shaffer, Hierarchical composites reinforced with carbon nanotube grafted fibres: the potential assessed at the single fibre level. Chem. Mater. 20(5), 1862–1869 (2008)

    Article  Google Scholar 

  44. R.J. Sager, P.J. Klein, D.C. Lagoudas, Q. Zhang, J. Liu, L. Dai, J.W. Baur, Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009). DOI: http://dx.doi.org/10.1016/j.compscitech.2008.12.021

    Google Scholar 

  45. F.H. Zhang, R.G. Wang, X.D. He, C. Wang, L.N. Ren, Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fibre hybrid. J. Mater. Sci. 44(13), 3574–3577 (2009)

    Article  Google Scholar 

  46. N. De Greef, L. Zhang, A. Magrez, L. Forro, J.-P. Locquet, I. Verpoest, J.W. Seo, Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam. Relat. Mater. 51, 39–48 (2015)

    Article  Google Scholar 

  47. R. Li, N. Lachman, P. Florin, H.D. Wagner, B.L. Wardle, Hierarchical carbon nanotube carbon fibre unidirectional composites with preserved tensile and interfacial properties. Compos. Sci. Technol. 117, 139–145 (2015)

    Article  Google Scholar 

  48. K. Naito, J.M. Yang et al., Tensile properties of carbon nanotubes grown on ultrahigh strength polyacrylonitrile-based and ultrahigh modulus pitch-based carbon fibres. Appl. Phys. Lett. 92(23) (2008). Paper 231912

    Google Scholar 

  49. S.V. Lomov, L. Beyers, L. Gorbatikh, I. Verpoest, V. Koissin, Z. Kotanjac, M. Karahan, Permeability and compressibility of CNT-CNF grafted textile reinforcement. In: 10th International Conference on Flow Processes in Composite Materials (FPCM-10), Ascona, Switzerland (2010), p. CD edition

    Google Scholar 

  50. V. Koissin, Z. Kotanjac, S.V. Lomov, L. Gorbatikh, L. Warnet, R. Akkerman, Deformability of a textile reinforcement modified with nanofibres, in ed. by C. Binetruy, F. Boussu, Proceedings of the 10th International Conference on Textile Composites (TexComp-10) (2010), pp. 181–186.

    Google Scholar 

  51. S.V. Lomov, L. Gorbatikh, M. Houlle, Z. Kotanjac, V. Koissin, K. Vallons, I. Verpoest, Compression resistance and hysteresis of carbon fibre yarns with grown carbon nanotubes/nanofibres. Compos. Sci. Technol. 71, 1746–1753 (2011)

    Article  Google Scholar 

  52. S.V. Lomov, L. Gorbatikh, Z. Kotanjac, V. Koissin, M. Houlle, O. Rochez, M. Karahan, L. Mezzo, I. Verpoest, Compressibility of carbon woven fabric with carbon nanotubes grown on the fibres. Compos. Sci. Technol. 71(3), 315–325 (2011)

    Article  Google Scholar 

  53. S.V. Lomov, L. Gorbatikh, I. Verpoest, A model for the compression of a random assembly of carbon nanotubes. Carbon 49, 2079–2091 (2011)

    Article  Google Scholar 

  54. S.V. Lomov, L. Gorbatikh, I. Verpoest, Compression behaviour of a fibre bundle with grafted carbon nanotubes. Carbon 49, 4458–4465 (2011)

    Article  Google Scholar 

  55. S.V. Lomov, S. Wicks, L. Gorbatikh, I. Verpoest, B.L. Wardle, Compressibility of nanofibre-grafted alumina fabric and yarns: aligned carbon nanotube forests. Compos. Sci. Technol. 90, 57–66.G (2014)

    Google Scholar 

  56. M.A. Aravand, O. Shishkina, I. Straumit, A.H. Liotta, S.S. Wicks, B.L. Wardle, S.V. Lomov, L. Gorbatikh, Effect of “fuzzy” fibre morphology on the internal geometry of textile composites characterization by micro-computed tomography. 20th International Conference on Composite Materials, Copenhagen, 19–24 July 2015

    Google Scholar 

  57. N. Lachman, B.J. Carey, D.P. Hashim, P.M. Ajayan, H.D. Wagner, Application of continuously-monitored single fibre fragmentation tests to carbon nanotube/carbon microfibre hybrid composites. Compos. Sci. Technol. 72(14), 1711–1717 (2012)

    Article  Google Scholar 

  58. C.D. Wood, M.J. Palmeri, K.W. Putz, G. Ho, R. Barto, L.C. Brinson, Nanoscale structure and local mechanical properties of fibre-reinforced composites containing MWCNT-grafted hybrid glass fibres. Compos. Sci. Technol. 72(14), 1705–1710 (2012)

    Article  Google Scholar 

  59. V. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Can carbon nanotubes grown on fibers fundamentally change stress distribution in a composite? Composites Part A 63, 32–34 (2014). DOI: http://dx.doi.org/10.1016/j.compositesa.2014.03.021

    Google Scholar 

  60. P. Drescher, M. Thomas, J. Borris, U. Riedel, C. Arlt, Strengthening fibre/matrix interphase by fibre surface modification and nanoparticle incorporation into the matrix. Compos. Sci. Technol. 74, 60–66 (2013)

    Article  Google Scholar 

  61. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A.W. van Vuure, S.V. Lomov, I. Verpoest, Interfacial shear strength of a glass fibre/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70, 1346–1352 (2010)

    Article  Google Scholar 

  62. S.-L. Gao, E. Mäder, R. Plonka, Nanocomposite coatings for healing surface defects of glass fibres and improving interfacial adhesion. Compos. Sci. Technol. 68(14), 2892–2901 (2008)

    Article  Google Scholar 

  63. J.E. Zhang, R.C. Zhuang, J.W. Liu, E. Mader, G. Heinrich, S.L. Gao, Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon 48(8), 2273–2281 (2010)

    Article  Google Scholar 

  64. P.-C. Ma, J.-W. Liu, S.-L. Gao, E. Mäder, Development of functional glass fibres with nanocomposite coating: a comparative study. Compos. A: Appl. Sci. Manuf. 44, 16–22 (2013)

    Article  Google Scholar 

  65. J. Karger-Kocsis, H. Mahmood, A. Pegoretti, Recent advances in fibre/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 73, 1–43 (2015)

    Article  Google Scholar 

  66. V.P. Veedu, A.Y. Cao, X.S. Li, K.G. Ma, C. Soldano, S. Kar, P.M. Ajayan, M.N. Ghasemi-Nejhad, Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5(6), 457–462 (2006)

    Article  Google Scholar 

  67. H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, A. Bismarck, Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20, 4751–4762 (2010)

    Article  Google Scholar 

  68. E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39(6), 1065–1070 (2008)

    Article  Google Scholar 

  69. X. Xu, Z. Zhou, Y. Hei, B. Zhang, J. Bao, X. Chen, Improving compression-after-impact performance of carbon-fiber composites by CNTs/thermoplastic hybrid film interlayer. Compos. Sci. Technol. 95, 75–81 (2014)

    Article  Google Scholar 

  70. G. Chatzigeorgiou, Y. Efendiev, D.C. Lagoudas, Homogenization of aligned “fuzzy fibre” composites. Int. J. Solids Struct. 48(19), 2668–2680 (2011)

    Article  Google Scholar 

  71. S.I. Kundalwal, M.C. Ray, Effective properties of a novel composite reinforced with short carbon fibres and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012)

    Article  Google Scholar 

  72. S.I. Kundalwal, M.C. Ray, Effect of carbon nanotube waviness on the elastic properties of the fuzzy fibre reinforced composites. J. Appl. Mech. 80(2), 1–13 (2013)

    Article  Google Scholar 

  73. X. Ren, J. Burton, G.D. Seidel, K. Lafdi, Computational multiscale modeling and characterization of piezoresistivity in fuzzy fibre reinforced polymer composites. Int. J. Solids Struct. 54, 121–134 (2015)

    Article  Google Scholar 

  74. C.Y. Li, T.W. Chou, Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)

    Article  Google Scholar 

  75. L. Gorbatikh, S.V. Lomov, I. Verpoest, Original mechanism of damage initiation revealed through modeling of naturally occurring microstructures. J. Mech. Phys. Solids 58, 735–750 (2010)

    Article  Google Scholar 

  76. W. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, State of the art of carbon nanotube fibres: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012)

    Article  Google Scholar 

  77. A.S. Wu, T.W. Chou, Carbon nanotube fibres for advanced composites. Mater. Today. 15(7–8) (2012)

    Google Scholar 

  78. M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)

    Article  Google Scholar 

  79. J.M. Feng, R. Wang, Y.L. Li, X.H. Zhong, L. Cui, Q.J. Guo, F. Hou, Carbon 48, 3817 (2010)

    Article  Google Scholar 

  80. A. Bogdanovich, P. Bradford, D. Mungalov, S.L. Fang, M. Zhang, R.H. Baughman, S. Hudson, Fabrication and mechanical characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE J. 43(1), 6–19 (2007)

    Google Scholar 

  81. P.D. Bradford, A.E. Bogdanovich, Carbon nanotube yarn and 3-D braid composites. Part I: tensile testing and mechanical properties analysis. Compos. A: Appl. Sci. Manuf. 41, 230–237 (2010)

    Article  Google Scholar 

  82. P.D. Bradford, A.E. Bogdanovich, Carbon nanotube yarn and 3-D braid composites. Part II: dynamic mechanical analysis. Compos. A: Appl. Sci. Manuf. 41, 238–246 (2010)

    Article  Google Scholar 

  83. J.J. Vilatela, R. Khare, A.H. Windle, The hierarchical structure and properties of multifunctional carbon nanotube fibre composites. Carbon 50(3), 1227–1234 (2012)

    Article  Google Scholar 

  84. Y. Shimamura, K. Oshima, K. Tohgo, T. Fujii, K. Shirasu, G. Yamamoto, T. Hashida, K. Goto, T. Ogasawara, K. Naito, T. Nakano, Y. Inoue, Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform. Compos. A: Appl. Sci. Manuf. 62, 32–38 (2014)

    Article  Google Scholar 

  85. J.J. Vilatela, A.H. Windle, Adv. Mater. 22, 4959 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Skolkovo Institute of Science and Technology in Russian Federation through the No. 335-MRA project linked to the Center for Design, Manufacturing and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan V. Lomov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorbatikh, L., Lomov, S.V. (2017). Nano-engineered Carbon Fibre-Reinforced Composites: Challenges and Opportunities. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_6

Download citation

Publish with us

Policies and ethics