Skip to main content

Virtual Testing of Composite Structures: Progress and Challenges in Predicting Damage, Residual Strength and Crashworthiness

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

The entry into service of the Boeing 787 and the Airbus A350 XWB heralded a new era in the utilisation of carbon fibre composite material in the primary structure of passenger aircraft. With an estimated 20 % airframe weight reduction in comparison to equivalent conventional aluminium aircraft, commensurate savings in fuel consumption per revenue passenger kilometre, superior fatigue and corrosion resistance and the promise of reduced maintenance schedules for the operators, it is likely that these materials will continue to feature prominently in future aircraft development programmes. Nonetheless, these ‘all-composite’ aircraft have incurred high development costs which is not a sustainable business model if composites are to be exploited across the product range of airframe manufacturers, especially towards the smaller single-aisle passenger aircraft. The high costs of materials and tooling are exacerbated by slow production rates and the extensive level of physical testing required as part of the development and certification process.

The increased use of simulation at all levels of the development cycle provides tremendous opportunities for reducing costs and improving production efficiencies. While the aerospace industry has been at the forefront of incorporating computational tools in the design and optimisation of aircraft, the use of composites has brought with it a new set of challenges in developing reliable and robust simulation tools. This chapter addresses the development and use of numerical modelling aimed at reducing the extent of physical testing. The ultimate objective is to enable certification by simulation which, in essence, requires the ability to reliably predict damage. This chapter will therefore focus on predicting damage initiation and propagation, the residual strength of damaged structures, and assessing the energy-absorbing capacity of composite structures for crashworthiness assessments. While the emphasis is primarily on aerostructures, the automotive and railway industries are exploring similar lightweighting strategies where issues such as crashworthiness are of paramount importance and where simulation will likewise play a prominent role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E 11 :

Modulus in the fibre direction

τ 01 :

Mode I interlaminar strength

E 22 :

Modulus in the transverse direction

τ 02(3) :

Mode II interlaminar strength

E 33 :

Modulus in the thickness direction

G IC(R) :

Mode I interlaminar fracture toughness

ν 12 :

Longitudinal-transverse Poisson’s ratio

G IIC(R) :

Mode II interlaminar fracture toughness

ν 13 :

Longitudinal-thickness Poisson’s ratio

η :

B–K law coefficient

ν 23 :

Transverse-thickness Poisson’s ratio

μ NT(NL) :

Friction coefficient in Puck’s criteria

G 12 :

Longitudinal-transverse shear modulus

det F :

Determinant of deformation gradient

G 13 :

Longitudinal-thickness shear modulus

ρ :

Density

G 23 :

Transverse-thickness shear modulus

τ Y ij :

Yield strength under ij shear loading

X T :

Longitudinal tensile strength

α ij :

Strain-hardening coefficient for ij

X C :

Longitudinal compressive strength

β ij :

Coefficient for ij non-linear shear profile

Y T :

Transverse tensile strength

\( {p}_{1-4,\ ij} \) :

Degraded shear modulus coefficient

Y C :

Transverse compressive strength

σ T(C)11 :

Stress component

S 12 :

In-plane shear strength

d ij :

Damage parameter

Γ T11 :

Fibre tensile fracture toughness

σ 123(LNT) :

Stress in global (local) coordinate system

Γ C11 :

Fibre compressive fracture toughness

ε r,el(in) :

Elastic strain/inelastic strain

Γ T22 :

Matrix tensile fracture toughness

F SS :

Steady-state load

Γ C22 :

Matrix compressive fracture toughness

F peak :

Peak load

Γ ij :

Shear fracture toughness for ij direction

E abs :

Energy absorbed

\( {G}_{ij}^{*,\ t+\Delta t} \) :

Degraded shear modulus

SEA:

Specific energy absorption

References

  1. J. Leahy, Airbus’ Global Market forecast 2015–2034 (2015). Available from: http://www.airbus.com/company/market/forecast/

  2. W. Tan et al., Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. A Appl. Sci. Manuf. 7, 212–226 (2015)

    Article  Google Scholar 

  3. Beyond Vision 2020 (Towards 2050), Aeronautics and Air Transport (2013). Available from: ftp://ftp.cordis.europa.eu/pub/technology-platforms/docs/acare-background-2010_en.pdf

  4. GAO, Status of FAA’s Actions to Oversee the Safety of Composite Airplanes (Aviation Safety: US Government Accounting Office, Washington, DC, 2011), p. 50

    Google Scholar 

  5. J. Rouchon, Certification of large airplane composite structures, in Recent Progress and New Trends in Compliance Philosophy (ICAS, 1990), pp. 1439–1447

    Google Scholar 

  6. B. Szabo, R. Actis, Simulation governance: technical requirements for mechanical design. Comput. Methods Appl. Mech. Eng. 249, 158–168 (2012)

    Article  Google Scholar 

  7. D. Systems, ABAQUS Documentation 6.12. SIMULIA (2012)

    Google Scholar 

  8. M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)

    Article  Google Scholar 

  9. P.P. Camanho, C.G. Davila, Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA-Technical Paper 211737(1) (2002), p. 33

    Google Scholar 

  10. J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, MA, 1994)

    Google Scholar 

  11. S. Pinho, L. Iannucci, P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development. Compos. A Appl. Sci. Manuf. 37(1), 63–73 (2006)

    Article  Google Scholar 

  12. D.C. Fleming, Modelling composite crushing initiation using a cohesive element formulation. Int. J. Crash. 16(5), 475–485 (2011)

    Article  Google Scholar 

  13. L.N. Chiu, B.G. Falzon, R. Boman, A continuum damage mechanics model for the analysis of the crashworthiness of composite structures: a work in progress, in Proceedings of the 15th Australian Aeronautical Conference, Melbourne (2013)

    Google Scholar 

  14. A. Puck, H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

    Article  Google Scholar 

  15. G. Catalanotti, P.P. Camanho, A.T. Marques, Three-dimensional failure criteria for fiber-reinforced laminates. Compos. Struct. 95, 63–79 (2013)

    Article  Google Scholar 

  16. M.V. Donadon et al., A progressive failure model for composite laminates subjected to low velocity impact damage. Comput. Struct. 86(11–12), 1232–1252 (2008)

    Article  Google Scholar 

  17. W.H. Press, Numerical Recipes in Fortran 77: The Art of Scientific Computing, vol 1 (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  18. A. Faggiani, B.G. Falzon, Predicting low-velocity impact damage on a stiffened composite panel. Compos. Part A 41(6), 737–749 (2010)

    Article  Google Scholar 

  19. L. Raimondo et al., A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage. Compos. Sci. Technol. 72(5), 624–632 (2012)

    Article  Google Scholar 

  20. W. Tan et al., Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. Part A 71, 212–226 (2015)

    Article  Google Scholar 

  21. ASTM, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, in D5528-13, West Conshohocken, PA (2013)

    Google Scholar 

  22. A. Offringa, et al., Fiber reinforced thermoplastic butt joint development, in Proceedings of International SAMPE Symposium and Exhibition (2008)

    Google Scholar 

  23. ASTM, Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fibre Reinforced Polymer Matrix Composites, in D6671/D6671M-13e1, West Conshohocken, PA (2013)

    Google Scholar 

  24. S.T. Pinho, P. Robinson, L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  Google Scholar 

  25. ASTM, Standard test method for plane strain fracture toughness of metallic materials, in E399-90, Philadelphia, PA (1993)

    Google Scholar 

  26. ASTM, Standard test method for measurement of fracture toughness, in ASTM E1820-15, West Conshohocken, PA (2015)

    Google Scholar 

  27. S. Jose et al., Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates. Compos. Sci. Technol. 61(8), 1115–1122 (2001)

    Article  Google Scholar 

  28. M.W. Czabaj, J. Ratcliffe, Comparison of intralaminar and interlaminar mode-I fracture toughness of unidirectional IM7/8552 graphite/epoxy composite. Compos. Sci. Technol. 89, 15–23 (2012)

    Article  Google Scholar 

  29. L. Feo, G. Marra, A.S. Mosallam, Stress analysis of multi-bolted joints for FRP pultruded composite structures. Compos. Struct. 94(12), 3769–3780 (2012)

    Article  Google Scholar 

  30. F.P. van der Meer, C. Oliver, L.J. Sluys, Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos. Sci. Technol. 70(4), 692–700 (2010)

    Article  Google Scholar 

  31. D. Fanteria, G. Longo, E. Panettieri, A non-linear shear damage model to reproduce permanent indentation caused by impacts in composite laminates. Compos. Struct. 111, 111–121 (2014)

    Article  Google Scholar 

  32. ASTM, Standard test method for shear properties of composite materials by V-notched rail shear method, in D7078/D7078M-12, West Conshohocken, PA (2012)

    Google Scholar 

  33. ASTM, Standard test method for shear properties of composite materials by the V-notched beam method, in D5379/D5379M-12, West Conshohocken, PA (2012)

    Google Scholar 

  34. ASTM, Standard test method for in-plane shear properties of polymer matrix composite materials by the rail shear method, in D4255/D4255M-15a, West Conshohocken, PA (2015)

    Google Scholar 

  35. S. Rivallant, C. Bouvet, N. Hongkarnjanakul, Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements. Compos. Part A 55, 83–93 (2013)

    Article  Google Scholar 

  36. A.I.T. Method, Determination of Compression Strength after Impact, AITM 1-0010 (2010)

    Google Scholar 

  37. P. Prombut et al., Delamination of multidirectional composite laminates at 0°/θ° ply interfaces. Eng. Fract. Mech. 73(16), 2427–2442 (2006)

    Article  Google Scholar 

  38. N. Hongkarnjanakul, C. Bouvet, S. Rivallant, Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure. Compos. Struct. 106, 549–559 (2013)

    Article  Google Scholar 

  39. H.A. Israr, S. Rivallant, J.J. Barrau, Experimental investigation on mean crushing stress characterization of carbon–epoxy plies under compressive crushing mode. Compos. Struct. 96, 357–364 (2013)

    Article  Google Scholar 

  40. W. Tan, B.G. Falzon, M. Price, Predicting the crushing behaviour of composite material using high-fidelity finite element modelling. Int. J. Crashworthiness 20(1), 60–77 (2015)

    Article  Google Scholar 

  41. M. Waimer et al., Experimental study of CFRP components subjected to dynamic crash loads. Compos. Struct. 105, 288–299 (2013)

    Article  Google Scholar 

  42. S. Heimbs, F. Strobl, P. Middendorf, Integration of a composite crash absorber in aircraft fuselage vertical struts. Int. J. Veh. Struct. Syst. 3(2), 87–95 (2011)

    Google Scholar 

  43. P. Feraboli, Development of a corrugated test specimen for composite materials energy absorption. J. Compos. Mater. 42(3), 229–256 (2008)

    Article  Google Scholar 

  44. W. Tan, B.G. Falzon, Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading. Compos. Sci. Technol. 126(1), 60–77 (2016)

    Article  Google Scholar 

  45. Cytec, APC-2 PEKK Thermoplastic Polymer Technical Data Sheet, Cytec Engineering Materials (2012)

    Google Scholar 

  46. M. Dao, R.J. Asaro, On the critical conditions of kink band formation in fiber composites with ductile matrix. Scr. Mater. 34(11), 1771–1777 (1996)

    Article  Google Scholar 

  47. W. Tan, Modelling the Behaviour of Composite Structures Under Impact and Crush Loading (Queen’s University Belfast, Belfast, 2016)

    Google Scholar 

  48. G.C. Jacob et al., Energy absorption in polymer composites for automotive crashworthiness. J. Compos. Mater. 36(7), 813–850 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Falzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falzon, B.G., Tan, W. (2017). Virtual Testing of Composite Structures: Progress and Challenges in Predicting Damage, Residual Strength and Crashworthiness. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_24

Download citation

Publish with us

Policies and ethics