Skip to main content

Damage and Failure Analysis of Bolted Joints in Composite Laminates

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites
  • 4063 Accesses

Abstract

Composite materials have gained popularity in high-performance products that need to be lightweight, yet strong enough to take high loads. Their adoption as a major contribution to aircraft structures followed on from the discovery of carbon fibre at the Royal Aircraft Establishment at Farnborough, UK, in 1964. Bolted joints are needed to fasten highly loaded composite components to other composite or metallic parts. They are easy to assemble and can be disassembled when required for inspection and/or maintenance purposes without imparting damage. Generally, the determination of local stress distribution in a bolted joint is a three-dimensional problem due to bending effects and clamping of the fastener. The stress state in the vicinity of a bolted hole depends on many complex factors such as friction properties of the members, contact problem, geometry and stiffness of the joined members, joint configuration, clamping force and loading conditions. To precisely include all these factors in a stress analysis of a joint based on conventional analytical methods is extremely cumbersome. Analytical and numerical models developed during the last 50 years to describe damage accumulation and final failure are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ec.europa.eu, Jos Delbeke’s speech during the conference “A New Flightplan”. (European Commission, 2016), Available at http://ec.europa.eu/clima/news/articles/news_2012020701_en.htm. Accessed 20 Sep 2016

  2. Anon, (2016), Available at https://www.iata.org/policy/environment/Documents/atag-paper-on-cng2020-july2013.pdf. Accessed 20 Sep 2016

  3. Airbus, Eco-efficiency/Airbus, a leading aircraft manufacturer (2016). Available at http://www.airbus.com/company/eco-efficiency/. Accessed 20 Sep 2016

  4. A. Fink et al., Hybrid CFRP/titanium bolted joints: performance assessment and application to a spacecraft payload adaptor. Compos. Sci. Technol. 70(2), 305–317 (2010)

    Article  Google Scholar 

  5. Anon, (2016), Available at http://www.airbus.com/presscentre/corporate-information/key-documents/. Accessed 20 Sep 2016

  6. L.J. Hart-Smith, Bolted Joints in Graphite-Epoxy Composites. Douglas Aircraft Company, NASA Langley Report NASA CR-144899, 1976

    Google Scholar 

  7. L.J. Hart-Smith, Mechanically-fastened joints for advanced composites—phenomenological considerations and simple analyses, in Fibrous Composites in Structural Design, ed. by E.M. Lenoe, D.W. Oplinger, J.J. Burke (Plenum Press, New York, 1980), pp. 543–574

    Chapter  Google Scholar 

  8. L.J. Hart-Smith, Design and analysis of bolted and riveted joints in fibrous composite structures, in Recent Advances in Structural Joints and Repairs for Composite Materials, ed. by L. Tong, C. Soutis (Kluwer Academic Publishers, Dordrecht, 2003), pp. 211–254

    Chapter  Google Scholar 

  9. A. Atas, G. Mohamed, C. Soutis, Modelling delamination onset and growth in pin loaded composite laminates. Compos. Sci. Technol. 72(10), 1096–1101 (2012)

    Article  Google Scholar 

  10. A. Atas, G.F. Mohamed, C. Soutis, Progressive failure analysis of bolted joints in composite laminates. Plast. Rubber Compos. 41(4–5), 209–214 (2012)

    Article  Google Scholar 

  11. A. Atas, et al., Progressive failure analysis of bolted carbon fiber/epoxy composite plates. 2, in National Design, Manufacturing and Analysis Congress, Balikesir, Turkey, 2010, pp. 138–148

    Google Scholar 

  12. A. Atas, N. Arslan, F. Sen, Failure analysis of laminated composite plates with two parallel pin-loaded holes. J. Reinf. Plast. Compos. 28(10), 1265–1276 (2009)

    Article  Google Scholar 

  13. A. Atas, F. Sen, N. Arslan, Investigation of mechanical behaviours of parallel pin-loaded composite plates under static loading. Celal Bayar Univ. J. Tech. Sci. 2(12), 83–96 (2009)

    Google Scholar 

  14. F.K. Chang, X.L. Qing, Strength Determination of Mechanical Fastened Joints, in Recent Advances in Structural Joints and Repairs for Composite Materials, ed. by L. Tong, C. Soutis (Kluwer Academic Publishers, Dordrecht, 2003), pp. 101–140

    Chapter  Google Scholar 

  15. F.L. Matthews, P.P. Camanho, Stresses in Mechanical Fastened Joints, in Recent Advances in Structural Joints and Repairs for Composite Materials, ed. by L. Tong, C. Soutis (Kluwer Academic Publishers, Dordrecht, 2003), pp. 67–100

    Chapter  Google Scholar 

  16. T. Dejong, Stresses around pin-loaded holes in elastically orthotropic or isotropic plates. J. Compos. Mater. 11, 313–331 (1977)

    Article  Google Scholar 

  17. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Noordhoff Internatuional Publishing, Leyden, 1977)

    Book  Google Scholar 

  18. S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body (Mir Publishers, Moscow, 1981)

    Google Scholar 

  19. J. Kratochvil, W. Becker, Structural analysis of composite bolted joints using the complex potential method. Compos. Struct. 92(10), 2512–2516 (2010)

    Article  Google Scholar 

  20. M.W. Hyer, E.C. Klang, D.E. Cooper, The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate. J. Compos. Mater. 21(3), 190–206 (1987)

    Article  Google Scholar 

  21. M.W. Hyer, E.C. Klang, Stresses around holes in pin-loaded orthotropic plates. J. Aircr. 22(12), 1099–1101 (1985)

    Article  Google Scholar 

  22. P. Berbinau, C. Soutis, A new approach for solving mixed boundary value problems along holes in orthotropic plates. Int. J. Solids Struct. 38(1), 143–159 (2001)

    Article  Google Scholar 

  23. C.T. McCarthy, P.J. Gray, An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints. Compos. Struct. 93(2), 287–298 (2011)

    Article  Google Scholar 

  24. R. Prabhakaran, Photoelastic investigation of bolted joints in composites. Composites 13(3), 253–256 (1982)

    Article  Google Scholar 

  25. M.W. Hyer, D. Liu, Stresses in pin-loaded orthotropic plates—photoelastic results. J. Compos. Mater. 19(2), 138–153 (1985)

    Article  Google Scholar 

  26. S. Koshide, Investigation of the pin joints in composites by the moire method. Exp. Mech. 26(2), 113–118 (1986)

    Article  Google Scholar 

  27. L.I. Eriksson, Contact stresses in bolted joints of composite laminates. Compos. Struct.6(1–3), 57–75 (1986)

    Article  Google Scholar 

  28. J.H. Crews, C.S. Hong, I.S. Raju, Stress-concentration factors for finite orthotropic laminates with a pin-loaded hole. 1981, NASA Technical Paper 1862, p. 44

    Google Scholar 

  29. P.P. Camanho, Application of Numerical Methods to the Strength Prediction of Mechanically Fastened Joints in Composite Laminates, Ph.D. Thesis, Centre for Composite Materials, Imperial College of Science, Technology and Medicine, University of London, London, 1999, pp. 316

    Google Scholar 

  30. P.P. Camanho, F.L. Matthews, A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 33(24), 2248–2280 (1999)

    Article  Google Scholar 

  31. C.T. McCarthy, M.A. McCarthy, V.P. Lawlor, Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances. Compos. Part B Eng. 36(4), 290–305 (2005)

    Article  Google Scholar 

  32. K.I. Tserpes, P. Papanikos, T. Kermanidis, A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading. Fatigue Fract. Eng. Mater. Struct. 24(10), 663–675 (2001)

    Article  Google Scholar 

  33. K.I. Tserpes et al., Strength prediction of bolted joints in graphite/epoxy composite laminates. Compos. Part B Eng. 33(7), 521–529 (2002)

    Article  Google Scholar 

  34. T. Ireman, Three-dimensional stress analysis of bolted single-lap composite joints. Compos. Struct. 43(3), 195–216 (1998)

    Article  Google Scholar 

  35. B. Egan et al., Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance. Compos. Struct. 94(3), 1038–1051 (2012)

    Article  Google Scholar 

  36. F. Matthews, C. Wong, S. Chryssafitis, Stress distribution around a single bolt in fibre-reinforced plastic. Composites 13(3), 316–322 (1982)

    Article  Google Scholar 

  37. I. Marshall et al., Observations on bolted connections in composite structures. Compos. Struct. 13(2), 133–151 (1989)

    Article  Google Scholar 

  38. W.-H. Chen, S.-S. Lee, J.-T. Yeh, Three-dimensional contact stress analysis of a composite laminate with bolted joint. Compos. Struct. 30(3), 287–297 (1995)

    Article  Google Scholar 

  39. M.L. Dano, G. Gendron, A. Picard, Stress and failure analysis of mechanically fastened joints in composite laminates. Compos. Struct. 50(3), 287–296 (2000)

    Article  Google Scholar 

  40. A. Aktas, H. Imrek, Y. Cunedioglu, Experimental and numerical failure analysis of pinned-joints in composite materials. Compos. Struct. 89(3), 459–466 (2009)

    Article  Google Scholar 

  41. F. Sen, O. Sayman, Experimental failure analysis of two-serial-bolted composite plates. J. Appl. Polym. Sci. 113(1), 502–515 (2009)

    Article  Google Scholar 

  42. O. Sayman et al., Experimental determination of bearing strength in fiber reinforced laminated composite bolted joints under preload. J. Reinf. Plast. Compos. 26(10), 1051–1063 (2007)

    Article  Google Scholar 

  43. M.A. McCarthy et al., Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints. Compos. Sci. Technol. 62(10-11), 1415–1431 (2002)

    Article  Google Scholar 

  44. T.A. Collings, On the bearing strengths of Cfrp laminates. Composites 13(3), 241–252 (1982)

    Article  Google Scholar 

  45. P.D. Herrington, M. Sabbaghian, Effect of radial clearance between bolt and washer on the bearing strength of composite bolted joints. J. Compos. Mater. 26(12), 1826–1843 (1992)

    Article  Google Scholar 

  46. H.S. Wang, C.L. Hung, F.K. Chang, Bearing failure of bolted composite joints. Part I: Experimental characterization. J. Compos. Mater. 30(12), 1284–1313 (1996)

    Article  Google Scholar 

  47. J.P. Waszczak, T. Cruse, Failure mode and strength predictions of anisotropic bolt bearing specimens. J. Compos. Mater. 5(3), 421–425 (1971)

    Article  Google Scholar 

  48. J.H. Crews, R.A. Naik, Combined bearing and bypass loading on a graphite epoxy laminate. Compos. Struct. 6(1–3), 21–40 (1986)

    Article  Google Scholar 

  49. P.A. Smith, M.F. Ashby, K.J. Pascoe, Modeling clamp-up effects in composite bolted joints. J. Compos. Mater. 21(10), 878–897 (1987)

    Article  Google Scholar 

  50. F.K. Chang, R.A. Scott, G.S. Springer, Strength of mechanically fastened composite joints. J. Compos. Mater. 16, 470–494 (1982)

    Article  Google Scholar 

  51. F.K. Chang, R.A. Scott, G.S. Springer, Failure of composite laminates containing pin loaded holes—method of solution. J. Compos. Mater. 18(3), 255–278 (1984)

    Article  Google Scholar 

  52. H.A. Whitworth, O. Aluko, N.A. Tomlinson, Application of the point stress criterion to the failure of composite pinned joints. Eng. Fract. Mech. 75(7), 1829–1839 (2008)

    Article  Google Scholar 

  53. H.A. Whitworth, M. Othieno, O. Barton, Failure analysis of composite pin loaded joints. Compos. Struct. 59(2), 261–266 (2003)

    Article  Google Scholar 

  54. J.M. Whitney, R.J. Nuismer, Stress fracture criteria for laminated composites containing stress-concentrations. J. Compos. Mater. 8, 253–265 (1974)

    Article  Google Scholar 

  55. L.J. Hart-Smith, Bolted joint analyses for composite structures—current empirical methods and future scientific prospects, in Proceedings of the Joining and Repair of Composite Structures, eds. by K.T. Kedward, H. Kim (ASTM International, West Conshohocken, PA, 2004), pp. 127–160

    Google Scholar 

  56. J.M. Hundley et al., Three-dimensional progressive failure analysis of bolted titanium-graphite fiber metal laminate joints. J. Compos. Mater. 45(7), 751–769 (2010)

    Article  Google Scholar 

  57. A. Evcil, Progressive failure analysis of pin joints in composite laminates, in Computational Methods and Applied Computing, 2008, pp. 404–411

    Google Scholar 

  58. J.H. Kweon, S.Y. Shin, J.H. Choi, A two-dimensional progressive failure analysis of pinned joints in unidirectional-fabric laminated composites. J. Compos. Mater. 41(17), 2083–2104 (2007)

    Article  Google Scholar 

  59. A. Riccio, Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: Part II—numerical studies. J. Compos. Mater. 39(23), 2091–2112 (2005)

    Article  Google Scholar 

  60. Y. Xiao, T. Ishikawa, Bearing strength and failure behavior of bolted composite joints (part II: modeling, and simulation). Compos. Sci. Technol. 65(7-8), 1032–1043 (2005)

    Article  Google Scholar 

  61. B.M. Icten, R. Karakuzu, Progressive failure analysis of pin-loaded carbon-epoxy woven composite plates. Compos. Sci. Technol. 62(9), 1259–1271 (2002)

    Article  Google Scholar 

  62. X.L. Qing et al., Damage-tolerance-based design of bolted composite joints. Compos Struct Theory Pract 1383, 243–272 (2001)

    Article  Google Scholar 

  63. L.B. Lessard, M.M. Shokrieh, 2-dimensional modeling of composite pinned-joint failure. J. Compos. Mater. 29(5), 671–697 (1995)

    Article  Google Scholar 

  64. C.L. Hung, F.K. Chang, Bearing failure of bolted composite joints. Part II: model and verification. J. Compos. Mater. 30(12), 1359–1400 (1996)

    Article  Google Scholar 

  65. Z.Q. Wang et al., Progressive failure analysis of bolted single-lap composite joint based on extended finite element method. Mater. Des. 37, 582–588 (2012)

    Article  Google Scholar 

  66. K. Hollmann, Failure analysis of bolted composite joints exhibiting in-plane failure modes. J. Compos. Mater. 30(3), 358–383 (1996)

    Article  Google Scholar 

  67. W.G. Bickley, The distribution of stress round a circular hole in a plate. Philos. Trans. R. Soc. Lond. A 227, 383–415 (1928)

    Article  Google Scholar 

  68. J.H. Kweon, H.S. Ahn, J.H. Choi, A new method to determine the characteristic lengths of composite joints without testing. Compos. Struct. 66(1-4), 305–315 (2004)

    Article  Google Scholar 

  69. C.T. Sun, S.E. Yamada, Strength distribution of a unidirectional fiber composite. J. Compos. Mater. 12, 169–176 (1978)

    Article  Google Scholar 

  70. S.E. Yamada, C.T. Sun, Analysis of laminate strength and its distribution. J. Compos. Mater. 12, 275–284 (1978)

    Article  Google Scholar 

  71. F.K. Chang, The effect of pin load distribution on the strength of pin loaded holes in laminated composites. J. Compos. Mater. 20(4), 401–408 (1986)

    Article  Google Scholar 

  72. B.L. Agarwal, Static strength prediction of bolted joint in composite-material. AIAA J. 18(11), 1371–1375 (1980)

    Article  Google Scholar 

  73. A. Olmedo, C. Santiuste, On the prediction of bolted single-lap composite joints. Compos. Struct. 94(6), 2110–2117 (2012)

    Article  Google Scholar 

  74. C. Huhne et al., Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models. Compos. Struct. 92(2), 189–200 (2010)

    Article  Google Scholar 

  75. G.N. Labeas et al., Adaptative progressive damage modeling for large-scale composite structures. Int. J. Damage Mech. 21(3), 441–462 (2012)

    Article  Google Scholar 

  76. F.X. Irisarri et al., Progressive damage and failure of mechanically fastened joints in CFRP laminates. Part II: failure prediction of an industrial junction. Compos. Struct. 94(8), 2278–2284 (2012)

    Article  Google Scholar 

  77. Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  78. S.C. Tan, A progressive failure model for composite laminates containing openings. J. Compos. Mater. 25(5), 556–577 (1991)

    Article  Google Scholar 

  79. H.T. Sun, F.K. Chang, X.L. Qing, The response of composite joints with bolt-clamping loads, Part II: Model verification. J. Compos. Mater. 36(1), 69–92 (2002)

    Article  Google Scholar 

  80. I. Shahid, F.K. Chang, An Accumulative damage model for tensile and shear failures of laminated composite plates. J. Compos. Mater. 29(7), 926–981 (1995)

    Article  Google Scholar 

  81. T.E. Tay et al., Progressive failure analysis of composites. J. Compos. Mater. 42(18), 1921–1966 (2008)

    Article  Google Scholar 

  82. I. Eriksson, C.G. Aronsson, Strength of tensile loaded graphite epoxy laminates containing cracks, open and filled holes. J. Compos. Mater. 24(5), 456–482 (1990)

    Article  Google Scholar 

  83. A. Jumahat et al., Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Compos. Struct. 92(2), 295–305 (2010)

    Article  Google Scholar 

  84. ASTM, D 5961/D 5961M—01 Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates, United States, 2001

    Google Scholar 

  85. A. Atas, Strength Prediction of Mechanical Joints in Composite Laminates Based on Subcritical Damage Modelling, Ph.D. Thesis, Department of Mechanical Engineering, The University of Sheffield, Sheffield, 2012, p. 196

    Google Scholar 

  86. C. Soutis, N.A. Fleck, Static compression failure of carbon-fiber T800/924c composite plate with a single hole. J. Compos. Mater. 24(5), 536–558 (1990)

    Article  Google Scholar 

  87. C. Soutis, N.A. Fleck, P.T. Curtis, Hole–hole interaction in carbon-fiber epoxy laminates under uniaxial compression. Composites 22(1), 31–38 (1991)

    Article  Google Scholar 

  88. C. Soutis, J. Lee, Scaling effects in notched carbon fibre/epoxy composites loaded in compression. J. Mater. Sci. 43(20), 6593–6598 (2008)

    Article  Google Scholar 

  89. J. Lee, C. Soutis, Measuring the notched compressive strength of composite laminates: specimen size effects. Compos. Sci. Technol. 68(12), 2359–2366 (2008)

    Article  Google Scholar 

  90. J. Lee, C. Soutis, A study on the compressive strength of thick carbon fibre-epoxy laminates. Compos. Sci. Technol. 67(10), 2015–2026 (2007)

    Article  Google Scholar 

  91. J. Lee, C. Soutis, Thickness effect on the compressive strength of T800/924C carbon fibre-epoxy laminates. Compos. Part A Appl. Sci. Manuf. 36(2), 213–227 (2005)

    Article  Google Scholar 

  92. M.T. Kortschot, P.W.R. Beaumont, Damage mechanics of composite-materials. Part I: measurements of damage and strength. Compos. Sci. Technol. 39(4), 289–301 (1990)

    Article  Google Scholar 

  93. P.A. Smith, K.J. Pascoe, Behaviour of Bolted Joints in [0/90]ns Laminates, Cambridge University, CUED/C-mat./TR.121, 1985

    Google Scholar 

  94. P.A. Smith et al., The behavior of single-lap bolted joints in Cfrp laminates. Compos. Struct. 6(1-3), 41–55 (1986)

    Article  Google Scholar 

  95. J.F. Mandell, S.S. Wang, F.J. Mcgarry, Extension of crack tip damage zones in fiber reinforced plastic laminates. J. Compos. Mater. 9, 266–287 (1975)

    Article  Google Scholar 

  96. M.R. Wisnom, F.K. Chang, Modelling of splitting and delamination in notched cross-ply laminates. Compos. Sci. Technol. 60(15), 2849–2856 (2000)

    Article  Google Scholar 

  97. P.A. Smith, K.J. Pascoe, The effect of stacking-sequence on the bearing strengths of quasi-isotropic composite laminates. Compos. Struct. 6(1-3), 1–20 (1986)

    Article  Google Scholar 

  98. W.J. Quinn, F.L. Matthews, Effect of stacking sequence on pin-bearing strength in glass-fiber reinforced plastic. J. Compos. Mater. 11, 139–145 (1977)

    Article  Google Scholar 

  99. R.M. Jones, Mechanics of Composite Materials, 2nd edn. (Taylor & Francis, Philadelphia, PA, 1999), p. 519

    Google Scholar 

  100. ANSYS ® Academic Research, Release 12.1, 2009

    Google Scholar 

  101. S.M. Spearing, P.W.R. Beaumont, Fatigue damage mechanics of composite-materials. Part I: experimental-measurement of damage and post-fatigue properties. Compos. Sci. Technol. 44(2), 159–168 (1992)

    Article  Google Scholar 

  102. M.T. Kortschot, P.W.R. Beaumont, Damage mechanics of composite-materials. II: a damaged-based notched strength model. Compos. Sci. Technol. 39(4), 303–326 (1990)

    Article  Google Scholar 

  103. A. Ataş, C. Soutis, Strength prediction of bolted joints in CFRP composite laminates using cohesive zone elements. Compos. Part B Eng. 58, 25–34 (2014)

    Article  Google Scholar 

  104. P.W. Harper, S.R. Hallett, Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 75(16), 4774–4792 (2008)

    Article  Google Scholar 

  105. M.R. Wisnom, J. Haberle, Prediction of buckling and failure of unidirectional carbon-fiber epoxy struts. Compos. Struct. 28(3), 229–239 (1994)

    Article  Google Scholar 

  106. H.T. Hahn, S.W. Tsai, Nonlinear elastic behavior of unidirectional composite laminae. J. Compos. Mater. 7, 102–118 (1973)

    Article  Google Scholar 

  107. R.H. Oskouei, M. Keikhosravy, C. Soutis, Estimating clamping pressure distribution and stiffness in aircraft bolted joints by finite-element analysis. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 223(G7), 863–871 (2009)

    Article  Google Scholar 

  108. J. Montgomery, Methods for modeling bolts in the bolted joint, in ANSYS User’s Conference, 2002.

    Google Scholar 

  109. S. Heimbs et al., Low velocity impact on CFRP plates with compressive preload: test and modelling. Int. J. Impact Eng. 36(10–11), 1182–1193 (2009)

    Article  Google Scholar 

  110. V.K. Goyal, E.R. Johnson, C.G. Davila, Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos. Struct. 65(3-4), 289–305 (2004)

    Article  Google Scholar 

  111. A. Atas, G.F. Mohamed, C. Soutis, Effect of clamping force on the delamination onset and growth in bolted composite laminates. Compos. Struct. 94(2), 548–552 (2012)

    Article  Google Scholar 

  112. A. Atas, C. Soutis, Modelling of interlaminar delamination around a pin loaded composite joint, in Joint conference of Deformation and Fracture of Composites/5th Structural Integrity of Composite Materials (DFC11/SI5), Cambridge, UK, 2011

    Google Scholar 

  113. A. Atas, C. Soutis, Effect of clamping force on the delamination onset and growth in bolted composite laminates, in 16th International Conference on Composite Structures (ICCS16), Porto, 2011

    Google Scholar 

  114. M.T. Kortschot, P.W.R. Beaumont, M.F. Ashby, Damage mechanics of composite-materials. III: prediction of damage growth and notched strength. Compos. Sci. Technol. 40(2), 147–165 (1991)

    Article  Google Scholar 

  115. S.R. Hallett et al., An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A Appl. Sci. Manuf. 40(5), 613–624 (2009)

    Article  Google Scholar 

  116. W.G. Jiang, S.R. Hallett, M.R. Wisnom, Modelling of damage in composite materials using interface elements, in 5th Europian LS-DYNA Users Conference, Birmingham, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soutis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ataş, A., Soutis, C. (2017). Damage and Failure Analysis of Bolted Joints in Composite Laminates. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_21

Download citation

Publish with us

Policies and ethics