Skip to main content

Traction-Separation Relations in Delamination of Layered Carbon-Epoxy Composites Under Monotonic Loads: Experiments and Modeling

  • Chapter
  • First Online:
Book cover The Structural Integrity of Carbon Fiber Composites
  • 3824 Accesses

Abstract

It is well known that large-scale bridging accompanying delamination and fracture in layered composites is among the most important toughening mechanisms. The resulting resistance to fracture, however, is dependent on the specimen geometry rendering its modeling difficult. As a consequence, characterization of the tractions on the wake of the crack, the so-called bridging zone, is very important in the efforts to predict the loading response of composite structures. In this chapter, experimental results and modeling of delamination and fracture in layered composite specimens are discussed. The experimental part consists of displacement-controlled monotonic tests of interlaminar and intralaminar fracture. Selected specimens are equipped with wavelength-multiplexed fiber Bragg grating (FBG) sensors to monitor crack propagation and strains over several millimeters in the wake of the crack. The modeling part involves an iterative scheme to calculate the traction-separation relation, due to bridging, using the strains from the FBG sensors, parametric finite elements, and optimization. The experimental results demonstrate an important effect of specimen thickness in interlaminar and intralaminar fracture: the bridging zone length at steady state linearly increases with specimen thickness, while the maximum bridging stress is independent of thickness in each case. Results of a similar study in cross ply specimens, limited to a selected specimen thickness, show important effects of specimen width on the extent of large-scale bridging. The obtained traction-separation relations for each investigated case are employed in cohesive zone simulations to predict the corresponding load-displacement curves. On the basis of the experimental results, a micromechanics model is used, based on an embedded-cell model, to predict the observed specimen thickness effects on large-scale bridging. The results of the reported studies demonstrate that the so-called bridging law is not a material parameter and the proposed methods of analysis, predict very well the load-displacement response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α :

Vector of parameters of the bridging tractions profile

γ :

Traction profile exponent

Δ :

Applied displacement

δ :

Crack opening displacement

ε x,y,z :

Strains on directions x, y, and z

ε z (z):

Longitudinal experimental strain distribution

\( {\tilde{\varepsilon}}_z(z) \) :

Longitudinal numerical strain distribution

Λ 0 :

Period of the induced index modulation

λ B0, λ B :

Initial Bragg wavelength and current Bragg wavelength

ν f :

Poisson’s ratio of the optical fiber

σ max :

Maximum bridging traction

σ bf, max :

Fiber bundle strength

σ b (z):

Bridging tractions, over position

\( {\widehat{\sigma}}_b\left(\delta \right) \) :

Bridging tractions, over CODs

χ :

Crack length’s variation parameter

a :

Crack length

Β :

Specimen’s width

C :

Specimen’s compliance

D(δ):

Damage parameter, as linear stiffness degradation of the cohesive elements

F(α):

Objective function of the optimization scheme

f ε (z, α):

Error function, based on strains

f P (α):

Error function, based on forces

f J (α):

Error function, based ERRs

G IC, G IIC, G IIIC :

Critical energy release rates (ERRs) for each fracture mode

G I,i :

Initial fracture toughness, linear elastic, mode I

G I,b :

Energetic contribution of bridging, linear elastic, mode I

G II,i :

Initial fracture toughness, linear elastic, mode II

G total :

Total energy release rate, linear elastic

G ss :

Energy release rate at steady state, linear elastic

G weak :

Failure energy of weak connectors

G strong :

Failure energy of strong connectors

H :

Specimen’s thickness (or height)

J tip :

ERR by means of numerical J-integral

J I,b :

Energetic contribution of bridging, general case, mode I

J total :

Total ERR, general case

K c :

Stiffness of connectors

K 0 :

Initial stiffness of cohesive elements

n eff :

Mean core index of refraction

N weak :

Strength of weak connectors

N strong :

Strength of strong connectors

P :

Reaction force

p e :

Experimental optomechanical grating gage factor

w P , w J :

Weight factors of the error functions

z :

Bridging zone coordinates

z max :

Bridging zone length at steady state

References

  1. I.W. Daniel, O. Ishai, Engineering Mechanics of Composite Materials (Oxford University Press, New York, 1994)

    Google Scholar 

  2. I. Rauz, T. O’Brien, Fracture mechanics concepts, stress fields, strain energy release rates, delamination and growth criteria, in Delamination Behavior of Composites, ed. by S. Sridharan (CRC, Boca Raton, 2008), pp. 3–27

    Google Scholar 

  3. J. Frieden, J. Cugnoni, J. Botsis, T. Gmür, Vibration-based characterization of impact induced delamination in composite plates using embedded FBG sensors and numerical modelling. Compos. Part B 42, 607–613 (2011)

    Article  Google Scholar 

  4. S. Gao, J. Kim, Scanning acoustic microscopy as a tool for quantitative characterisation of damage in CFRPs. Compos. Sci. Technol. 59(3), 345–354 (1999)

    Article  Google Scholar 

  5. J. Kim, Recent developments in impact damage assessment of fibre composites, in Impact Behaviour of Fibre-Reinforced Composite Materials and Structures, ed. by S. Reid, G. Zhou (CRC, Boca Raton, 2000)

    Google Scholar 

  6. M. Wisnom, F. Pierron, CompTest 2004. Compos. Part A 37(2), 151 (2006)

    Google Scholar 

  7. Y. Zou, L. Tong, G. Steven, Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J. Sound Vib. 230(2), 357–378 (2000)

    Article  Google Scholar 

  8. J. Lee, Free vibration analysis of delaminated composite beams. Comput. Struct. 74(2), 121–129 (2000)

    Article  Google Scholar 

  9. D. Saravanos, D. Hopkins, Effects of delaminations on the damped dynamic characteristics of composite laminates: analysis and experiments. J. Sound Vib. 192(5), 977–993 (1996)

    Article  Google Scholar 

  10. T. Williams, F. Addessio, A dynamic model for laminated plates with delaminations. Int. J. Solids Struct. 35(1), 83–106 (1998)

    Article  Google Scholar 

  11. A. Todoroki, Y. Tanaka, Delamination identification of cross-ply graphite/epoxy composite beams using electric resistance change method. Compos. Sci. Technol. 62(5), 629–639 (2002)

    Article  Google Scholar 

  12. A. Todoroki, Y. Tanaka, Y. Shimamura, Delamination monitoring of graphite/epoxy laminated composite plate of electric resistance change method. Compos. Sci. Technol. 62(9), 1151–1160 (2002)

    Article  Google Scholar 

  13. H. Ling, K. Lau, L. Cheng, Determination of dynamic strain profile and delamination detection of composite structures using embedded multiplexed fibre-optic sensors. Compos. Struct. 66(1), 317–326 (2004)

    Article  Google Scholar 

  14. L. Sorensen, J. Botsis, T. Gmür, J. Cugnoni, Delamination detection and characterization of bridging tractions using long FBG optical sensors. Compos. A: Appl. Sci. Manuf. 38(10), 2087–2096 (2007)

    Article  Google Scholar 

  15. C. Keilers, F. Chang, Identifying delamination in composite beams using built-in piezoelectrics: part I—experiments and analysis. J. Intell. Mater. Syst. Struct. 6(5), 649–663 (1995)

    Article  Google Scholar 

  16. D. Saravanos, V. Birman, D. Hopkins, Detection of Delaminations in Composite Beams Using Piezoelectric Sensors. NASA Technical Memorandum 106611 AIAA-94-1754 (1994)

    Google Scholar 

  17. P. Tan, L. Tong, Integrated and discontinuous piezoelectric sensor/actuator for delamination detection, in Delamination Behavior of Composites, ed. by S. Sridharan (CRC, Boca Raton, 2008), pp. 141–168

    Chapter  Google Scholar 

  18. Y. Teboub, P. Hajela, A neural network based damage analysis of smart composite beams, in Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimisation (1992)

    Google Scholar 

  19. H. Tada, P. Paris, G. Irwin, The Stress Analysis of Cracks Handbook, 3rd edn. (ASME Press, New York, 2000)

    Book  Google Scholar 

  20. ASTM Standard, D6671-01, Standard Test Method for Mixed Mode I—Mode II Interlaminar Fracture Touhness of Unidirectional Fiber Reinforced Polymers (ASTM International, West Conshohocken, 2001)

    Google Scholar 

  21. ASTM Standard, D7905/D7905M – 14, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (ASTM International, West Conshohocken, 2014)

    Google Scholar 

  22. P. Davies, Review of standard procedures for delamination resistance testing. Delamination behavior of composites, in ed. by S. Sridharan. Delamination Behavior of Composites (Woodhead Publishing, CRC, Boca Raton, 2008), pp. 65–86

    Google Scholar 

  23. M. De Moura, Interlaminar Mode II fracture characterization, in ed. by S. Sridharan. Delamination Behavior of Composites (CRC, 2008), pp. 310–325

    Google Scholar 

  24. S. Lee, An edge crack torsion method for mode III delamination fracture testing. J. Compos. Technol. Res. 15(3), 193–201 (1993)

    Article  Google Scholar 

  25. E. Farmand-Ashtiani, D. Alanis, J. Cugnoni, J. Botsis, Delamination in cross-ply laminates: Identification of traction-separation relations and cohesive zone modeling. Compos. Sci. Technol. 119, 85–92 (2015)

    Article  Google Scholar 

  26. G. Pappas, J. Botsis, Intralaminar fracture of unidirectional carbon/epoxy composite: experimental results and numerical analysis. Int. J. Solids Struct. 85–86, 114–124 (2016)

    Article  Google Scholar 

  27. E. Farmand-Ashtiani, J. Cugnoni, J. Botsis, Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite. Int. J. Solids Struct. 55, 58–65 (2015)

    Article  Google Scholar 

  28. A. Turon, P. Camanho, J. Costa, Delamination in Composites: Simulation of Delamination in Composites Under Static and Fatigue Loading Using Cohesive Zone Models. VDM Verlag, D-66123 (VDM Verlag Dr. Müller, Saarbrücken, 2008)

    Google Scholar 

  29. S. Stutz, J. Cugnoni, J. Botsis, Studies of mode I delamination in monotonic and fatigue loading using FBG wavelength multiplexing and numerical analysis. Compos. Sci. Technol. 71(4), 443–449 (2011)

    Article  Google Scholar 

  30. B.F. Sørensen, T.K. Jacobsen, Large-scale bridging in composites: R-curves and bridging laws. Compos. A: Appl. Sci. Manuf. 29(11), 1443–1451 (1998)

    Article  Google Scholar 

  31. V. Tamuzs, S. Tarasovs, U. Vilks, Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens. Eng. Fract. Mech. 68(5), 513–525 (2001)

    Article  Google Scholar 

  32. M. Heidari-Rarani, M. Shokrieh, P. Camanho, Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects. Compos. Part B 45(1), 897–903 (2013)

    Article  Google Scholar 

  33. L. Sorensen, J. Botsis, T. Gmur, L. Humbert, Bridging tractions in mode I delamination: measurements and simulations. Compos. Sci. Technol. 68(12), 2350–2358 (2008)

    Article  Google Scholar 

  34. J. Botsis, Fiber Bragg grating applied to in-situ characterization of composites, in Wiley Encyclopedia of Composites (Wiley, New Jersey, 2012), pp. 1–15

    Google Scholar 

  35. A. Airoldi, C. Dávila, Identification of material parameters for modelling delamination in the presence of fibre bridging. Compos. Struct. 94(11), 3240–3249 (2012)

    Article  Google Scholar 

  36. A.B. De Morais, A new fibre bridging based analysis of the Double Cantilever Beam (DCB) test. Compos. A: Appl. Sci. Manuf. 42(10), 1361–1368 (2011)

    Article  Google Scholar 

  37. R. Gutkin et al., Modelling the R-curve effect and its specimen-dependence. Int. J. Solids Struct. 48(11), 1767–1777 (2011)

    Article  Google Scholar 

  38. V. Shanmugam, R. Penmetsa, E. Tuegel, S. Clay, Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models. Compos. Struct. 102, 38–60 (2013)

    Article  Google Scholar 

  39. C. Sun, Z. Jin, Modeling of composite fracture using cohesive zone and bridging models. Compos. Sci. Technol. 66(10), 1297–1302 (2006)

    Article  Google Scholar 

  40. A. Agrawal, P. Jar, Analysis of specimen thickness effect on interlaminar fracture toughness of fibre composites using finite element models. Compos. Sci. Technol. 63(10), 1393–1402 (2003)

    Article  Google Scholar 

  41. P. Davies, W. Cantwell, C. Moulin, H.H. Kausch, A study of the delamination resistance of IM6/PEEK composites. Compos. Sci. Technol. 36(2), 153–166 (1989)

    Article  Google Scholar 

  42. X. Gong, X. Gong, S. Aivazzadeh, M, B., R-curves characterization of glass/epoxy composite, in Proceedings of the Tenth International Conference on Composite Materials: Fatigue and Fracture (Woodhead Publishing, 1995)

    Google Scholar 

  43. S. Hashemi, A.J. Kinloch, J.G. Williams, The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proc. R. Soc. Lond. A Math. Phys. 427, 173–199 (1990)

    Article  Google Scholar 

  44. M. Hojo, T. Aoki, Thickness effect of double cantilever beam specimen on interlaminar fracture toughness of AS4/PEEK and T800/epoxy laminates, in Composite Materials: Fatigue and Fracture, Fourth Volume (ASTM International, Philadelphia, PA, USA, 1993)

    Google Scholar 

  45. B. Manshadi, A. Vassilopoulos, J. Botsis, A combined experimental/numerical study of the scaling effects on mode I delamination of GFRP. Compos. Sci. Technol. 83, 32–39 (2013)

    Article  Google Scholar 

  46. Z. Suo, G. Bao, Delamination R-curve phenomena due to damage. J. Mech. Phys. Solids 40(1), 1–16 (1992)

    Article  Google Scholar 

  47. B.D. Manshadi, E. Farmand-Ashtiani, J. Botsis, A. Vassilopoulos, An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen. Compos. Part A 61, 43–50 (2014)

    Article  Google Scholar 

  48. K. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8), 1263–1276 (1997)

    Article  Google Scholar 

  49. R. Measures, Structural Monitoring with Fiber Optic Technology, 1st edn. (Academic, San Diego, 2001)

    Google Scholar 

  50. S. Stutz, J. Cugnoni, J. Botsis, Crack—fiber sensor interaction and characterization of the bridging tractions in mode I delamination. Eng. Fract. Mech. 78, 880–900 (2011)

    Article  Google Scholar 

  51. J. Frieden et al., High-speed internal strain measurements in composite structures under dynamic load using embedded FBG sensors. Compos. Struct. 92(8), 1905–1912 (2010)

    Article  Google Scholar 

  52. P. Giaccari et al., On a direct determination of non-uniform internal strain fields using fibre Bragg gratings. Smart Mater. Struct. 14(1), 127–136 (2005)

    Article  Google Scholar 

  53. W. Morey, J. Dunphy, G. Meltz, Multiplexing fiber Bragg grating sensors. Fiber Integr. Opt. 10(4), 351–360 (1991)

    Article  Google Scholar 

  54. C. Schizas, S. Stutz, J. Botsis, D. Coric, Monitoring of non-homogeneous strains in composites with embedded wavelength multiplexed fiber Bragg gratings: a methodological study. Compos. Struct. 94, 987–994 (2012)

    Article  Google Scholar 

  55. ASTM Standard, D5528−01, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. (ASTM International, West Conshohocken, 2007)

    Google Scholar 

  56. L.P. Canal, G. Pappas, J. Botsis, Large scale fiber bridging in mode I intralaminar fracture: multi-scale mechanisms and simulations. Compos. Sci. Technol. 126, 52–59 (2016)

    Article  Google Scholar 

  57. K. Levenberg, A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  Google Scholar 

  58. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431 (1963)

    Article  Google Scholar 

  59. P. Camanho, C. Dávila, Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737 (2002), pp. 1–37

    Google Scholar 

  60. J. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  61. © Systèmes Dassault, Abaqus Analysis User’s Manual (v6.12) (Dassault Systèmes Simulia Corp., Providence, RI, USA, 2012)

    Google Scholar 

  62. T. Anderson, Fracture Mechanics, 2nd edn. (CRP, Houston, 1995)

    Google Scholar 

  63. R. Massabòa, L. Brandinellib, B.N. Cox, Mode I weight functions for an orthotropic double cantilever beam. Int. J. Eng. Sci. 41(13–14), 1497–1518 (2003)

    Article  Google Scholar 

  64. M. Czabaja, J. Ratcliffeb, Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite. Compos. Sci. Technol. 89, 15–23 (2013)

    Article  Google Scholar 

  65. N. Sato, M. Hojo, M. Nishikawa, Novel test method for accurate characterization of intralaminar fracture toughness in CFRP laminates. Compos. Part B 65, 89–98 (2014)

    Article  Google Scholar 

  66. D.A.W. Kaute, H.R. Shercliff, M.F. Ashby, Delamination, fiber bridging and toughness of ceramic matrix composites. Acta Metall. Mater. 41, 1959–1970 (1993)

    Article  Google Scholar 

  67. S.M. Spearing, A.G. Evans, The role of fiber bridging in the delamination resistance of fiber-reinforced composites. Acta Metall. Mater. 40(9), 2191–2199 (1992)

    Article  Google Scholar 

  68. B. Cox, Q. Yang, In quest of virtual test for structural composites. Science 314(314), 1102–1107 (2006)

    Article  Google Scholar 

  69. J. LLorca et al., Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)

    Article  Google Scholar 

  70. C. González, J. LLorca, Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater. 54(16), 4171–4181 (2006)

    Article  Google Scholar 

  71. V. Šmilauer et al., Multiscale simulation of fracture of braided composites via repetitive unit cells. Eng. Fract. Mech. 78(6), 901–918 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial financial support from the Swiss National Science Foundation under Grant 200020_149721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Botsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Botsis, J., Farmand-Ashtiani, E., Pappas, G., Cugnoni, J., Canal, L.P. (2017). Traction-Separation Relations in Delamination of Layered Carbon-Epoxy Composites Under Monotonic Loads: Experiments and Modeling. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_20

Download citation

Publish with us

Policies and ethics