Skip to main content

Progressive Damage in Fibre-Reinforced Composites: Towards More Accurate and Efficient Computational Modelling and Analysis

  • Chapter
  • First Online:

Abstract

A cursory examination of fracture surfaces of fibre-reinforced composite laminates should convince most observers that failure of composites is generally a complicated event. Progressive damage culminating in final failure or separation of parts is, in fact, a sequence of multi-scale events in composite structures. Statistically sensitive features, such as fibre alignment, arrangements, sizes, voids, defects, etc., may only be explicitly interrogated at the appropriate length scales. However, modelling and predicting progressive failure in composite structures for engineering applications require a balance between computational efficiency and sufficient fidelity to the mechanics and physics of damage and fracture. Current models, even at the coupon level and lower length scales, already contain a large amount of detail. Presently, it is still computationally unrealistic to port all information to the next higher scale of modelling actual structures. Effective and efficient bridging between multiple scales to sift relevant information, from molecular mechanics to micromechanics to coupon-level models, is required. In this chapter, we review recent developments of approaches such as the smeared crack model and more novel ones such as the integrated XFEM-cohesive element (XFEM-CE) and floating node method (FNM), which could potentially be applied to virtual testing of composite structures. Today, challenges of technical nature as well as availability of computational muscle remain, although a tremendous wealth of research has been published and much significant progress has been made.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.G. Green, M.R. Wisnom, S.R. Hallett, An experimental investigation into the tensile strength scaling of notched composites. Compos. Part A Appl. Sci. Manuf. 38(3), 867–878 (2007)

    Article  Google Scholar 

  2. M.R. Wisnom, S.R. Hallett, The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. Manuf. 40(4), 335–342 (2009)

    Article  Google Scholar 

  3. J.X. Tao, C.T. Sun, Influence of ply orientation on delamination in composite laminates. J. Compos. Mater. 32(21), 1933–1947 (1998)

    Article  Google Scholar 

  4. E.S. Greenhalgh, C. Rogers, P. Robinson, Fractographic observations on delamination growth and the subsequent migration through the laminate. Compos. Sci. Technol. 69(14), 2345–2351 (2009)

    Article  Google Scholar 

  5. C. Canturri, E.S. Greenhalgh, S.T. Pinho, The relationship between mixed-mode II/III delamination and delamination migration in composite laminates. Compos. Sci. Technol. 105, 102–109 (2014)

    Article  Google Scholar 

  6. M.F. Pernice et~al., Experimental study on delamination migration in composite laminates. Compos. Part A Appl. Sci. Manuf. 73, 20–34 (2015)

    Article  Google Scholar 

  7. J.A. Nairn, S.F. Hu, J.S. Bark, A critical-evaluation of theories for predicting microcracking in composite laminates. J. Mater. Sci. 28(18), 5099–5111 (1993)

    Article  Google Scholar 

  8. X.Q. Li et~al., Experimental study of damage propagation in over-height compact tension tests. Compos. Part A Appl. Sci. Manuf. 40(12), 1891–1899 (2009)

    Article  Google Scholar 

  9. M.R. Wisnom, B. Khan, S.R. Hallett, Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites. Compos. Struct. 84(1), 21–28 (2008)

    Article  Google Scholar 

  10. P.P. Camanho, P. Maimi, C.G. Davila, Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  11. F.P. Van Der Meer, L.J. Sluys, Continuum models for the analysis of progressive failure in composite laminates. J. Compos. Mater. 43(20), 2131–2156 (2009)

    Article  Google Scholar 

  12. S.R. Hallett et~al., An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A Appl. Sci. Manuf. 40(5), 613–624 (2009)

    Article  Google Scholar 

  13. S.T. Pinho, L. Iannucci, P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: development. Compos. Part A Appl. Sci. Manuf. 37(1), 63–73 (2006)

    Article  Google Scholar 

  14. S.T. Pinho, L. Iannucci, P. Robinson, Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Compos. Part A Appl. Sci. Manuf. 37(5), 766–777 (2006)

    Article  Google Scholar 

  15. F.P. van der Meer et~al., Computational modeling of complex failure mechanisms in laminates. J. Compos. Mater. 46(5), 603–623 (2012)

    Article  Google Scholar 

  16. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  Google Scholar 

  17. F.P. van der Meer, L.J. Sluys, A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int. J. Fract. 158(2), 107–124 (2009)

    Article  Google Scholar 

  18. M.J. Swindeman et~al., Strength prediction in open hole composite laminates by using discrete damage modeling. AIAA J. 51(4), 936–945 (2013)

    Article  Google Scholar 

  19. D. Ling, Q. Yang, B. Cox, An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 156(1), 53–73 (2009)

    Article  Google Scholar 

  20. L.F. Kawashita, A. Bedos, S.R. Hallett, Modelling mesh independent transverse cracks in laminated composites with a simplified cohesive segment method. CMC Comput. Mater. Continua 32(2), 133–158 (2012)

    Google Scholar 

  21. J. Lee, C. Soutis, Measuring the notched compressive strength of composite laminates: specimen size effects. Compos. Sci. Technol. 68(12), 2359–2366 (2008)

    Article  Google Scholar 

  22. M.R. Wisnom, S.R. Hallett, C. Soutis, Scaling effects in notched composites. J. Compos. Mater. 44(2), 195–210 (2010)

    Article  Google Scholar 

  23. Z.P. Bazant, Size effect in blunt fracture: concrete, rock, metal. J. Eng. Mech. 110(4), 518–535 (1984)

    Article  Google Scholar 

  24. B.Y. Chen et~al., Numerical analysis of size effects on open-hole tensile composite laminates. Compos. Part A Appl. Sci. Manuf. 47, 52–62 (2013)

    Article  Google Scholar 

  25. M. Ridha et~al., Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences. Compos. Part A Appl. Sci. Manuf. 58, 16–23 (2014)

    Article  Google Scholar 

  26. Z.C. Su et~al., Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 122, 507–517 (2015)

    Article  Google Scholar 

  27. M.J. Laffan et~al., Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: Size and lay-up effects. Compos. Sci. Technol. 70(4), 614–621 (2010)

    Article  Google Scholar 

  28. S.T. Pinho, P. Robinson, L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  Google Scholar 

  29. S. Pimenta, S.T. Pinho, An analytical model for the translaminar fracture toughness of fibre composites with stochastic quasi-fractal fracture surfaces. J. Mech. Phys. Solids 66, 78–102 (2014)

    Article  Google Scholar 

  30. K. Song, Y. Li, C.A. Rose, Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates. AIAA 1861, 1–18 (2011)

    Google Scholar 

  31. T.E. Tay, X.S. Sun, V.B.C. Tan, Recent efforts toward modeling interactions of matrix cracks and delaminations: an integrated XFEM-CE approach. Adv. Compos. Mater. 23(5–6), 391–408 (2014)

    Article  Google Scholar 

  32. N.V. De Carvalho et~al., Modeling delamination migration in cross-ply tape laminates. Compos. Part A Appl. Sci. Manuf. 71, 192–203 (2015)

    Article  Google Scholar 

  33. B.Y. Chen et~al., A floating node method for the modelling of discontinuities in composites. Eng. Fract. Mech. 127, 104–134 (2014)

    Article  Google Scholar 

  34. B.Y. Chen, T.E. Tay, S.T. Pinho, V.B.C. Tan, Modelling the tensile failure of composites with the floating node method. Comput. Methods Appl. Mech. Eng. 308, 414–442 (2016). doi:10.1016/j.cma.2016.05.027

    Article  Google Scholar 

  35. T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    Google Scholar 

  36. M. Tirvaudey, ARPE Final Report: Experimental and modelling analysis of delamination and damage propagation in multidirectional composite material. École Normale Supérieure de Cachan and National University of Singapore, 2015

    Google Scholar 

  37. X.F. Hu, B.Y. Chen, M. Tirvaudey, V.B.C. Tan, T.E. Tay, Integrated XFEM-CE analysis of delamination migration in multi-directional composite laminates. Compos. A: Appl. Sci. Manuf. 90, 161–173 (2016). doi:10.1016/j.compositesa.2016.07.007

    Article  Google Scholar 

  38. T.E. Tay, X.F. Hu, M. Tirvaudey, V.B.C. Tan, Modelling delamination migration in multi-directional composite laminates, in 17th European Conference on Composite Materials (ECCM17), Munich, Germany, 26–30 June 2016

    Google Scholar 

  39. B.Y. Chen, PhD Thesis, Numerical modelling of scale-dependent damage and failure of composites, in Department of Mechanical Engineering. National University of Singapore, 2013

    Google Scholar 

  40. E.F. Rybicki, M.F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9(4), 931–938 (1977)

    Article  Google Scholar 

  41. R. Krueger, Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the support of the National University of Singapore through the Competitive Strategic Grant No. WBS R265000523646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Tay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, B.Y., Tay, T.E. (2017). Progressive Damage in Fibre-Reinforced Composites: Towards More Accurate and Efficient Computational Modelling and Analysis. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_15

Download citation

Publish with us

Policies and ethics