Skip to main content

Vertebrate Embryonic Cleavage Pattern Determination

  • Chapter
  • First Online:
Vertebrate Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 953))

Abstract

The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimar C (1997) Formation of new plasma membrane during the first cleavage cycle in the egg of Xenopus laevis: an immunocytological study. Dev Growth Differ 39:693–704

    Article  CAS  PubMed  Google Scholar 

  • Ajduk A, Zernicka-Goetz M (2015) Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod. Epub ahead of print

    Google Scholar 

  • Amodeo AA, Jukam D, Straight AF, Skotheim JM (2015) Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc Natl Acad Sci U S A 112:E1086–E1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzarello A, Hoest T, Mikkelsen AL (2012) The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse. Hum Reprod 27:2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Ballard WW (1986a) Morphogenetic movements and a provisional fate map of development in the holostean fish, Amia calva. J Exp Zool 238:355–372

    Article  Google Scholar 

  • Ballard WW (1986b) Stages and rates of normal development in the holostean fish, Amia calva. J Exp Zool 238:337–354

    Article  Google Scholar 

  • Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, García-Velasco J, Meseguer M (2014) Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril 101:699–704

    Article  PubMed  Google Scholar 

  • Batten BE, Albertini DF, Ducibella T (1987) Patterns of organelle distribution in mouse embryos during preimplantation development. Am J Anat 178:204–213

    Article  CAS  PubMed  Google Scholar 

  • Bjerkness M (1986) Physical theory of the orientation of astral mitotic spindles. Science 234:1413–1416

    Article  Google Scholar 

  • Black SD, Vincent J-P (1988) The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg. Dev Biol 128:65–71

    Article  CAS  PubMed  Google Scholar 

  • Bluemink JG (1970) The first cleavage of the amphibian egg. An electron microscope study of the onset of cytokinesis in the egg of Ambystoma mexicanum. J Ultrastruct Res 32:142–166

    Article  CAS  PubMed  Google Scholar 

  • Bluemink JG, deLaat SW (1973) New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis: I. Electron microscope observations. J Cell Biol 59:89–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucaut JC, Darribere T, Boulekbache H, Thiery JP (1984) Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307:364–367

    Article  CAS  PubMed  Google Scholar 

  • Brachet A (1910) Experimental polyspermy as a means of analysis of fecundation. Arch Entwiklungsmech Org 30:261–303

    Article  Google Scholar 

  • Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, Elinson RP (2007) Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev Dyn 236:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Bukarov A, Nadezhdina E, Slepchenko B, Rodionov V (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969

    Article  CAS  Google Scholar 

  • Burbank KS, Mitchison TJ, Fisher DS (2007) Slide-and-cluster models for spindle assembly. Curr Biol 17:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Burruel V, Klooster K, Barker CM, Pera RR, Meyers S (2014) Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep 4:6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers TJ, Armstrong PB (1986) Membrane protein redistribution during Xenopus first cleavage. J Cell Biol 102:2176–2184

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CF (2013) Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online 26:477–485

    Article  PubMed  Google Scholar 

  • Cao LG, Wang YL (1996) Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell 7:225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, Crescenzo C, Guglielmino A (2013) The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet 30:703–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers EL (1939) The movement of the egg nucleus in relation to the sperm aster in the echinoderm egg. J Exp Biol 16:409–424

    Google Scholar 

  • Chavez SL, Loweke KE, Han JH, Moussavi F, Colls P, Munne S, Behr B, Reijo Pera RA (2012) Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 3:1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavez SL, McElroy SL, Bossert NL, De Jonge CJ, Rodriguez MV, Leong DE, Behr B, Westphal LM, Reijo Pera RA (2014) Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres. Hum Mol Genet 23:4970–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow JF, Yeung WS, Lau EY, Lee VC, Ng EH, Ho PC (2014) Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol 12:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collart C, Allen GE, Bradshaw CR, Smith J, Zegerman CP (2013) Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341:893–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collazo A (1996) Evolutionary correlations between early development and life history in plethodontid salamanders and teleost fishes. Am Zool 36:116–131

    Article  Google Scholar 

  • Collazo A, Bolker JA, Keller R (1994) A phylogenetic perspective on teleost gastrulation. Am Nat 144:133–152

    Article  Google Scholar 

  • Conklin EG (1905) The organization and cell lineage of the ascidian egg. J Acad Nat Sci Phil 13:1–119

    Google Scholar 

  • Courtois A, Schuh M, Ellenberg J, Hiiragi T (2012) The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J Cell Biol 198:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz M, Galdea B, Garrido N, Pedersen KS, Martínez M, Pérez-Cano I, Muñoz M, Meseguer M (2011) Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet 28:569–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M, Meseguer M (2012) Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online 25:371–381

    Article  PubMed  Google Scholar 

  • Da Silva-Buttkus P, Jayasooriya GS, Mora JM, Mobberley M, Ryder TA, Baithun M, Stark J, Franks S, Hardy K (2008) Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J Cell Sci 121:3890–3900

    Article  PubMed  CAS  Google Scholar 

  • Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, Comi R, Fadini R (2012) Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online 25:474–480

    Article  PubMed  Google Scholar 

  • Danilchik M, Williams M, Brown E (2013) Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: potential roles in morphogen distribution and detection. Dev Biol 382:70–81

    Article  CAS  PubMed  Google Scholar 

  • Danilchik MV, Brown EE (2008) Membrane dynamics of cleavage furrow closure in Xenopus laevis. Dev Dyn 237:565–579

    Article  PubMed  Google Scholar 

  • Danilchik MV, Funk WC, Brown EE, Larkin K (1998) Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos. Dev Biol 194:47–60

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Dzamba BD, Keller R, DeSimone DW (2008) Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev Dyn 237:2684–2692

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson LA, Keller R, DeSimone DW (2004) Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev Dyn 231:888–895

    Article  CAS  PubMed  Google Scholar 

  • Decker M, Jaensch S, Pozniakovsky A, Zinke A, O'Connell KF, Zachariae W, Myers E, Hyman AA (2011) Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr Biol 21:1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Delattre M, Gönczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Dobson AT, Raja R, Abeyta MJ, Taylor T, Shen S, Haqq C, Pera RA (2004) The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet 13:1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Dogterom M, Kerssemakers JW, Romet-Lemmone G, Janson ME (2005) Force generation by dynamic microtubules. Curr Opin Cell Biol 17:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ducibella T, Anderson E (1975) Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol 47:45–58

    Article  CAS  PubMed  Google Scholar 

  • Dumont S, Mitchinson TJ (2009) Force and length in the mitotic spindle. Curr Biol 19:R749–R761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards RG, Purdy JM, Steptoe PC, Walters DE (1981) The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol 141:408–416

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP (1975) Site of sperm entry and a cortical contraction associated with egg activation in the frog Rana pipiens. Dev Biol 47:257–268

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP (2009) Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. J Exp Zool Part B Mol Dev Evol 312B:526–532

    Article  Google Scholar 

  • Eno C, Pelegri F (2013) Gradual recruitment and selective clearing generate germ plasm aggregates in the zebrafish embryo. Bioarchitecture 3:125–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Eno C, Pelegri F (2016) Germ cell determinant transmission, segregation and function in the zebrafish embryo. In: Carreira RP (ed) Insights from animal reproduction. InTech, Rijeka, Croatia, pp 115–142

    Google Scholar 

  • Eno C, Solanki B, Pelegri F (2016) aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143:1585–1599

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser G (1932) Cytological studies on egg fragments of the salamander triton: II. The history of the supernumerary sperm nuclei in normal fertilization and cleavage of fragments containing the egg nucleus. J Exp Zool 62:185–235

    Article  Google Scholar 

  • Feng B, Schwarz H, Jesuthasan S (2002) Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp Cell Res 279:14–20

    Article  CAS  PubMed  Google Scholar 

  • Fesenko I, Kurth T, Sheth B, Fleming TP, Citi S, Hausen P (2000) Tight junction biogenesis in the early Xenopus embryo. Mech Dev 96:51–65

    Article  CAS  PubMed  Google Scholar 

  • Field CM, Groen CA, Nguyen PA, Mitchison TJ (2015) Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs. Mol Biol Cell 26:3628–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierro-González JC, White MD, Silva JCR, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming TP, Hay M, Javed Q, Citi S (1993) Localisation of tight junction protein cingulin is temporally and spatially regulated during early mouse development. Development 117:1135–1144

    CAS  PubMed  Google Scholar 

  • Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B (2000) Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol 11:291–299

    Article  CAS  PubMed  Google Scholar 

  • Gaglio T, Dionne MA, Compton DA (1997) Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol 1997:1055–1066

    Article  Google Scholar 

  • Galán A, Montaner D, Póo ME, Valbuena D, Ruiz V, Aguilar C, Dopazo J, Simón C (2010) Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS One 5:e13615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner RL (2002) Experimental analysis of second cleavage in the mouse. Hum Reprod 17:3178–3189

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF (2000) Early mammalian development. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386

    Article  CAS  PubMed  Google Scholar 

  • Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science 342:856–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenan G, Brangwynne CP, Jaensch S, Gharakhani J, Jülicher F, Hyman AA (2010) Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Curr Biol 20:353–358

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Howard J, Schaffer E, Stelzer EH, Hyman AA (2003) The distribution of active force generators controls mitotic spindle position. Science 301:518–521

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8:461–465

    Article  CAS  PubMed  Google Scholar 

  • Gulyas BJ (1975) A reexamination of cleavage patterns in eutherian mammalian eggs: rotation of blastomere pairs during second cleavage in the rabbit. J Exp Zool 193:235–248

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi MS, Hiramoto Y (1986) Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the colcemid-UV method. Dev Growth Differ 28:143–156

    Article  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MSH (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    Article  CAS  PubMed  Google Scholar 

  • Han Y-C, Pralong-Zamofing D, Ackermann U, Geering K (1991) Modulation of Na, K-ATPase expression during early development of Xenopus laevis. Dev Biol 145:174–181

    Article  CAS  PubMed  Google Scholar 

  • Harrison RH, Kuo HC, Scriven PN, Handyside AH, Ogilvie CM (2000) Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote 8:217–224

    Article  CAS  PubMed  Google Scholar 

  • Hart NH, Becker KA, Wolenski JS (1992) The sperm entry site during fertilization of the zebrafish egg: localization of actin. Mol Reprod Dev 32:217–228

    Article  CAS  PubMed  Google Scholar 

  • Hart NH, Donovan M (1983) Fine structure of the chorion and site of sperm entry in the egg of Brachydanio. J Exp Zool 227:277–296

    Article  Google Scholar 

  • Hashimoto S, Kato N, Saeki K, Morimoto Y (2012) Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril 97:332–337

    Article  PubMed  Google Scholar 

  • Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K, Oakey J, Gatlin JC (2013) Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342:853–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus. Nature 382:420–425

    Article  CAS  PubMed  Google Scholar 

  • Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A (1997) Spindle assembly in Xenopus extracts: respective roles of centrosomes and microtubule self-organization. J Cell Biol 138:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994a) Overexpression of cadherins and underexpression of ß-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79:791–803

    Article  CAS  PubMed  Google Scholar 

  • Heasman J, Ginsberg D, Geiger B, Goldstone K, Pratt T, Yoshida-Noro C, Wylie CC (1994b) A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage. Development 120:49–57

    CAS  PubMed  Google Scholar 

  • Hertwig O (1893) Ueber den Werth der ersten Furchungszellen fuer die Organbildung des Embryo: Experimentelle studien am Frosch- und Tritonei. Arch mikr Anat xlii:662–807

    Article  Google Scholar 

  • Hibino T, Nishikata T, Nishida H (1998) Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo. Dev Growth Differ 40:85–95

    Article  CAS  PubMed  Google Scholar 

  • Hill TL, Kirschner MW (1982) Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work. Proc Natl Acad Sci U S A 79:490–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlinka D, Kalatová B, Dolinská S, Rutarová J, Rezacová J, Lazarovská S, Dudás M (2012) Time-lapse cleavage rating predicts human embryo viability. Physiol Res 61:513–525

    CAS  PubMed  Google Scholar 

  • Hoh JH, Heinz WF, Werbin JL (2013) Spatial information dynamics during early zebrafish development. Dev Biol 377:126–137

    Article  CAS  PubMed  Google Scholar 

  • Houliston E, Maro B (1989) Posttranslational modification of distinct microtubule subpopulations during cell polarization and differentiation in the mouse preimplantation embryo. J Cell Biol 108:543–551

    Article  CAS  PubMed  Google Scholar 

  • Iseto T, Nishida H (1999) Ultrastructural studies on the centrosome-attracting body: electron-dense matrix and its role in unequal cleavages in ascidian embryos. Dev Growth Differ 41:601–609

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Nguyen PA, Groen AC, Field CM, Mitchison TJ (2014) Microtubule nucleation remote from centrosomes may explain how asters span large cells. Proc Natl Acad Sci U S A 111:17715–17722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesuthasan S (1998) Furrow-associated microtubule arrays are required for the cohesion of zebrafish blastomeres following cytokinesis. J Cell Sci 111:3695–3703

    CAS  PubMed  Google Scholar 

  • Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, Ross R, Alper M, Barrett B, Frederick JM, Potter D, Behr B, Rabinowitz M (2010) Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod 25:1066–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MH, Maro B (1984) The distribution of cytoplasmic actin in mouse 8-cell blastomeres. J Embryol Exp Morphol 82:97–117

    CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981a) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981b) Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J Cell Biol 91:303–308

    Article  CAS  PubMed  Google Scholar 

  • Just EE (1919) The fertilization reaction in Echinarachnius parma. Biol Bull 36:1–10

    Article  CAS  Google Scholar 

  • Kalt MR (1971a) The relationship between cleavage and blastocoel formation in Xenopus laevis: I. Light microscopic observations. J Embryol Exp Morphol 26:37-49

    Google Scholar 

  • Kalt MR (1971b) The relationship between cleavage and blastocoel formation in Xenopus laevis: II. Electron microscopic observations. J Embryol Exp Morphol 26:51–66

    Google Scholar 

  • Keller RE (1986) The cellular basis of amphibian gastrulation. In: Browder LW (ed) Developmental biology, a comprehensive synthesis, vol 2, The cellular basis of morphogenesis. Plenum Publishing Corporation, New York

    Google Scholar 

  • Kidder GM, McLachlin JR (1985) Timing of transcription and protein synthesis underlying morphogenesis in preimplantation mouse embryos. Dev Biol 112:265–275

    Article  CAS  PubMed  Google Scholar 

  • Kimmel C, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development in the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Kimura A (2011) Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc Natl Acad Sci U S A 108:137–142

    Article  CAS  PubMed  Google Scholar 

  • Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig JJ, Morrell C, Doi H (2000) Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 127:1737–1749

    PubMed  Google Scholar 

  • Kotak S, Gönczy P (2013) Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 25:741–748

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Suzuki H, Yang X, Jiang S, Foote HR (1994) Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy. Biol Reprod 50:163–170

    Article  CAS  PubMed  Google Scholar 

  • Kühl M, Wedlich D (1996) Xenopus cadherins: sorting out types and functions in embryogenesis. Dev Dyn 207:121–134

    Article  PubMed  Google Scholar 

  • Kunda P, Baum B (2009) The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 19:174–179

    Article  CAS  PubMed  Google Scholar 

  • Landry DW, Zucker HA, Sauer MV, Reznik M, Wiebe L (2006) Hypocellularity and absence of compaction as criteria for embryonic death. Regen Med 1:367–371

    Article  PubMed  Google Scholar 

  • Lázaro-Diéguez F, Ispolatov I, Müsch A (2015) Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum. Mol Biol Cell 26:1286–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee G, Hynes R, Kirschner M (1984) Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Choi HJ, Park TS, Lee SI, Kim YM, Rengaraj D, Nagai H, Sheng G, Lin JM, Han JY (2013) Cleavage events and sperm dynamics in chick intrauterine embryos. PLoS One 8:e80631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessman CA (2012) Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 1:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy JB, Johnson MH, Goodall H, Maro B (1986) The timing of compaction: control of a major developmental transition in mouse early embryogenesis. J Embryol Exp Morphol 95:213–237

    CAS  PubMed  Google Scholar 

  • Lindeman RE, Pelegri F (2012) Localized products of futile cycle/lrmp promote centrosome-nucleus attachment in the zebrafish zygote. Curr Biol 22:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chapple V, Feenan K, Roberts P, Matson P (2015) Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study. Fertil Steril 103:1485–1491

    Article  PubMed  Google Scholar 

  • Liu Y, Chapple V, Roberts P, Matson P (2014) Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril 102(1295–1300):e1292

    Google Scholar 

  • Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101:518–523

    Article  CAS  PubMed  Google Scholar 

  • Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev Biol 1:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo D, Peirce SM, Skalak TC, Davidson L, Marsden M, Dzamba B, DeSimone DW (2004) Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Dev Biol 271:210–222

    Article  CAS  PubMed  Google Scholar 

  • Los FJ, Van Opstal D, van den Berg C (2004) The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum Reprod Update 10:79–94

    Article  PubMed  Google Scholar 

  • Lundin K, Bergh C, Hardarson T (2001) Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod 16:2652–2657

    Article  CAS  PubMed  Google Scholar 

  • Luxenburg C, Pasolli HA, Williams SE, Fuchs E (2011) Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 13:203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabuchi I, Tsukita S, Tsukita S, Sawai T (1988) Cleavage furrow isolated from newt eggs: contraction, organization of the actin filaments and protein components of the furrow. Proc Natl Acad Sci U S A 85:5966–5970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G (1998) Centrosome reduction during mouse spermiogenesis. Dev Biol 203:424–434

    Article  CAS  PubMed  Google Scholar 

  • Martineau SN, Andreassen PR, Margolis RL (1995) Delay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery. J Cell Biol 131:191–205

    Article  PubMed  Google Scholar 

  • Matsubara Y, Sakai A, Kuroiwa A, Suzuki T (2014) Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages. Dev Growth Differ 56:573–582

    Article  PubMed  Google Scholar 

  • McNally FJ (2013) Mechanisms of spindle positioning. J Cell Biol 200:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merzdorf CS, Chen YH, Goodenough DA (1998) Formation of functional tight junctions in Xenopus embryos. Dev Biol 195:187–203

    Article  CAS  PubMed  Google Scholar 

  • Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J (2011) The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 26:2658–2671

    Article  PubMed  Google Scholar 

  • Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A (2012) Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril 98:1481–1489

    Article  PubMed  Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima M (2016) Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 53:45–56

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ, Nguyen PA, Coughlin M, Groen AC (2013) Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol. Mol Biol Cell 24:1559–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HAJ, Hausen P (1995) Epithelial cell polarity in early Xenopus development. Dev Dyn 202:405–420

    Article  CAS  PubMed  Google Scholar 

  • Mulnard J, Huygens R (1978) Ultrastructural localization of non-specific alkaline phosphatase during cleavage and blastocyst formation in the mouse. J Embryol Exp Morphol 44:121–131

    CAS  PubMed  Google Scholar 

  • Nagai H, Sezaki M, Kakigushi K, Nakaya Y, Chul Lee H, Ladher R, Sasanami T, Han JH, Yonemura S, Sheng G (2015) Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 142:1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S, Marlow F, Abrams E, Kapp L, Mullins M, Pelegri F (2013) The chromosomal passenger protein Birc5b organizes microfilaments and germ plasm in the zebrafish embryo. PLoS Genet 9:e1003448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natale DR, Watson AJ (2002) Rac-1 and IQGAP are potential regulators of E-cadherin-catenin interactions during murine preimplantation development. Mech Dev 119(Suppl 1):S21–S26

    Article  PubMed  Google Scholar 

  • Navara CS, First NL, Schatten G (1994) Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Dev Biol 1:29–40

    Article  Google Scholar 

  • Needleman DJ, Groen AC, Ohi R, Maresca T, Mirny L, Mitchison TJ (2010) Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules. Mol Biol Cell 21:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi T, Takada T, Kawai N, Nishida H (2007) Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 17:1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Ng E, Claman P, Léveillé MC, Tanphaichitr N, Compitak K, Suwajanakorn S, Wells G (1995) Sex ratio of babies is unchanged after transfer of fast- versus slow-cleaving embryos. J Assist Reprod Genet 12:566–568

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PA, Groen AC, Loose M, Ishihara K, Wühr M, Field CM, Mitchison TJ (2014) Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346:244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niakan KK, Eggan K (2013) Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 375:54–64

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis. North Holland, Amsterdam

    Google Scholar 

  • Nikas G, Ao A, Winston RM, Handyside AH (1996) Compaction and surface polarity in the human embryo in vitro. Biol Reprod 55:32–37

    Article  CAS  PubMed  Google Scholar 

  • Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme: III. Up to the tissue restricted stage. Dev Biol 121:526–541

    Article  CAS  PubMed  Google Scholar 

  • Nishida H (1994) Localization of determinants for formation of the anterior-posterior axis in eggs of the ascidian Halocynthia roretzi. Dev Biol 120:3093–3104

    CAS  Google Scholar 

  • Nishida H (1996) Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi. Dev Biol 122:1271–1279

    CAS  Google Scholar 

  • Nishida H (2002) Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 217:227–276

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Satoh N (1983) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme: I. Up to the eight-cell stage. Dev Biol 99:382–394

    Article  CAS  PubMed  Google Scholar 

  • Nishikata T, Hibino T, Nishida H (1999) The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev Biol 209:72–85

    Article  CAS  PubMed  Google Scholar 

  • O'Farrell PH, Stumpff J, Su TT (2004) Embryonic cleavage cycles: how is a mouse like a fly. Curr Biol 14:R35–R45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohsugi M, Hwang SY, Butz S, Knowles BB, Solter D, Kemler R (1996) Expression and cell membrane localization of catenins during mouse preimplantation development. Dev Dyn 206:391–402

    Article  CAS  PubMed  Google Scholar 

  • Olivier N, Luengo-Oroz MA, Duloquin L, Faure E, Savy T, Veilleux I, Solinas X, Débarre D, Bourgine P, Santos A, Peyriéras N, Beaurepaire E (2010) Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329:967–971

    Article  CAS  PubMed  Google Scholar 

  • Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144

    Article  CAS  PubMed  Google Scholar 

  • Peippo J, Bredbacka P (1995) Sex-related growth rate differences in mouse preimplantation embryos in vivo and in vitro. Mol Reprod Dev 40:56–61

    Article  CAS  PubMed  Google Scholar 

  • Pergament E, Fiddler M, Cho N, Johnson D, Holmgren WJ (1994) Sexual differentiation and preimplantation cell growth. Hum Reprod 9:1730–1732

    Article  CAS  PubMed  Google Scholar 

  • Peshkin L, Wühr M, Pearl E, Haas W, Freeman RMJ, Gerhart JC, Klein AM, Horb M, Gygi SP, Kirschner MW (2015) On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev Cell 35:383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R, Lanner F (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflüger E (1884) Uber die Einwirkung der Schwerkraft und anderer Bedingungen auf die Richtung der Zelltheilung. Arch Physiol 34:607–616

    Article  Google Scholar 

  • Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development 132:479–490

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Nitsche K, Zernicka-Goetz M (2005) Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev 122:487–500

    Article  CAS  PubMed  Google Scholar 

  • Pribenszky C, Losonczi E, Molnár M, Lang Z, Mátyás S, Rajczy K, Molnár K, Kovács P, Nagy P, Conceicao J, Vajta G (2010) Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod Biomed Online 20:371–379

    Article  PubMed  Google Scholar 

  • Prodon F, Dru P, Roegiers F, Sardet C (2005) Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo. J Cell Sci 118:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R (1961) Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 148:81–89

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R (1996) Cytokinesis in animal cells. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rappaport R, Rappaport BN (1974) Establishment of cleavage furrows by the mitotic spindle. J Exp Zool 189:189–196

    Article  CAS  PubMed  Google Scholar 

  • Reber SB, Baumbart J, Widlund PO, Pozniakovsky A, Howard J, Hyman AA, Jülicher F (2013) ZMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. Nat Cell Biol 15:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Reeve WJ, Kelly FP (1983) Nuclear position in the cells of the mouse early embryo. Embryol Exp Morphol 75:117–139

    CAS  Google Scholar 

  • Reima I, Lehtonen E, Virtanen I, Flechon JE (1993) The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54:35–45

    Article  CAS  PubMed  Google Scholar 

  • Reinsch S, Karsenti E (1997) Movement of nuclei along microtubules in Xenopus egg extracts. Curr Biol 3:211–214

    Article  Google Scholar 

  • Roberts SJ, Leaf DS, Moore HP, Gerhart JC (1992) The establishment of polarized membrane traffic in Xenopus laevis embryos. J Cell Biol 118:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Roegiers F, Djediat C, Dumollard R, Roubiere C, Sardet C (1999) Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 126:3101–3117

    CAS  PubMed  Google Scholar 

  • Roegiers F, McDougall A, Sardet C (1995) The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 121:3457–3466

    CAS  PubMed  Google Scholar 

  • Rose L, Gönczy P (2014) Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook 30:1–43

    Google Scholar 

  • Roux W (1903) Ueber die Ursachen der Bestimmung der Hauptrichttingen des Embryo in Froschei. Anat Anz 23:5–91, 113–150, 101–193

    Google Scholar 

  • Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escribá MJ, Bellver F, Meseguer M (2012) Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril 98:1458–1463

    Article  PubMed  Google Scholar 

  • Sanders EJ, Singal PK (1975) Furrow formation in Xenopus embryos. Involvement of the golgi body as revealed by ultrastructural localization of thiamine pyrophosphatase activity. Exp Cell Res 93:219–224

    Article  CAS  PubMed  Google Scholar 

  • Sardet C, Dru P, Prodon F (2006) Maternal determinants and mRNAs in the cortex of ascidian oocytes, zygotes and embryos. Biol Cell 97:35–49

    Article  Google Scholar 

  • Sardet C, Nishida H, Prodon F, Sawada K (2003) Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 130:5839–5849

    Article  CAS  PubMed  Google Scholar 

  • Sawai T (1974) Furrow formation on a piece of cortex transplanted to the cleavage of the newt egg. J Cell Sci 15:259–267

    CAS  PubMed  Google Scholar 

  • Sawai T (1980) On propagation of cortical factor and cytoplasmic factor participating in cleavage furrow formation of the newts egg. Dev Growth Differ 22:437–444

    Article  Google Scholar 

  • Sawai T, Yomota A (1990) Cleavage plane determination in amphibian eggs. Ann N Y Acad Sci 582:40–49

    Article  CAS  PubMed  Google Scholar 

  • Sawin KE, Mitchison TJ (1991) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112:925–940

    Article  CAS  PubMed  Google Scholar 

  • Schatten G (1994) The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 165:299–335

    Article  CAS  PubMed  Google Scholar 

  • Schatten H (2012) The cell biology of fertilization. Academic, San Diego

    Google Scholar 

  • Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  CAS  PubMed  Google Scholar 

  • Schweisguth F (2015) Asymmetric cell division in the Drosophila bristle lineage: from polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdiscip Rev Dev Biol 4:299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selman K, Wallace RA, Sarka A, Qi X (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218:203–224

    Article  Google Scholar 

  • Servetnick M, Schulte-Merker S, Hausen P (1990) Cell surface proteins during early Xenopus development: analysis of cell surface proteins and total glycoproteins provides evidence for a maternal glycoprotein pool. Roux’s Arch Dev Biol 198:433–442

    Article  CAS  Google Scholar 

  • Sheng G (2014) Day-1 chick development. Dev Dyn 243:357–367

    Article  PubMed  Google Scholar 

  • Sheth B, Fesenko I, Collins JE, Moran B, Wild AE, Anderson JM, Fleming TP (1997) Tight junction assembly during mouse blastocyst formation is regulated by late expression of ZO-1 alpha+ isoform. Development 124:2027–2037

    CAS  PubMed  Google Scholar 

  • Sheth B, Fontaine JJ, Ponza E, McCallum A, Page A, Citi S, Louvard D, Zahraoui A, Fleming TP (2000) Differentiation of the epithelial apical junctional complex during mouse preimplantation development: a role for rab13 in the early maturation of the tight junction. Mech Dev 97:93–104

    Article  CAS  PubMed  Google Scholar 

  • Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A (2006) Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 133:2683–2693

    Article  CAS  PubMed  Google Scholar 

  • Skiadas CC, Jackson KV, Racowsky C (2006) Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril 86:1386–1391

    Article  PubMed  Google Scholar 

  • Slack C, Warner AE (1973) Intracellular and intercellular potentials in the early amphibian embryo. J Physiol 232:313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa-Nunes R, Somers WG (2013) Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv Exp Med Biol 786:79–102

    Article  CAS  PubMed  Google Scholar 

  • Stensen MH, Tanbo TG, Storeng R, Abyholm T, Fedorcsak P (2015) Fragmentation of human cleavage-stage embryos is related to the progression through meiotic and mitotic cell cycles. Fertil Steril 103:374–381

    Article  PubMed  Google Scholar 

  • Steptoe PC, Edwards RG, Purdy JM (1971) Human blastocysts grown in culture. Nature 229:132–133

    Article  CAS  PubMed  Google Scholar 

  • Straight AF, Field CM (2000) Microtubules, membranes and cytokinesis. Curr Biol 10:R760–R770

    Article  CAS  PubMed  Google Scholar 

  • Strauss B, Adams RJ, Papalopulu N (2006) A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopus blastomeres. Development 133:3883–3893

    Article  CAS  PubMed  Google Scholar 

  • Su K-C, Bement WM, Petronczki M, von Dassow G (2014) An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos. Mol Biol Cell 25:4049–4062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K (2012) Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 7:e36627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland AE, Speed TP, Calarco PG (1990) Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol 137:13–25

    Article  CAS  PubMed  Google Scholar 

  • Symerly C, Wu GJ, Zoran S, Ord T, Rawlins R, Jones J, Navara C, Gerrity M, Rinehart J, Binor Z, Asch R, Schatten G (1995) The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility. Nat Med 1:47–52

    Article  Google Scholar 

  • Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 332:90–102

    Article  CAS  PubMed  Google Scholar 

  • Theusch EV, Brown KJ, Pelegri F (2006) Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev Biol 292:129–141

    Article  CAS  PubMed  Google Scholar 

  • Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uochi T, Takahashi S, Ninomiya H, Fukui A, Asashima M (1997) The Na+, K+-ATPase (alpha) subunit requires gastrulation in the Xenopus embryo. Dev Growth Differ 39:571–580

    Article  CAS  PubMed  Google Scholar 

  • Urven LE, Yabe T, Pelegri F (2006) A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo. J Cell Sci 119:4342–4352

    Article  CAS  PubMed  Google Scholar 

  • Van Soom A, Boerjan ML, Bols PE, Vanroose G, Lein A, Doryn M, de Kruif A (1997) Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol Reprod 57:1041–1049

    Article  PubMed  Google Scholar 

  • Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, Fryns JP, Verbeke G, D'Hooghe T, Moreau Y, Vermeesch JR (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    Article  CAS  PubMed  Google Scholar 

  • Vassena R, Boué S, González-Roca E, Aran B, Auer H, Veiga A, Izpisua Belmonte JC (2011) Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138:3699–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestweber D, Gossler A, Boller K, Kemler R (1987) Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev Biol 124:451–456

    Article  CAS  PubMed  Google Scholar 

  • Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R (1998) A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 8:903–913

    Article  CAS  PubMed  Google Scholar 

  • Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6:133–144

    Article  CAS  PubMed  Google Scholar 

  • Weinerman R, Feng R, Ord TS, Schultz RM, Bartolomei MS, Coutifaris C, Mainigi M (2016) Morphokinetic evaluation of embryo development in a mouse model: functional and molecular correlates. Biol Reprod 94:64

    Article  CAS  Google Scholar 

  • Williams SE, Fuchs E (2013) Oriented divisions, fate decisions. Curr Opin Cell Biol 25:749–758

    Article  CAS  PubMed  Google Scholar 

  • Winning RS, Scales JB, Sargent TD (1996) Disruption of cell adhesion in Xenopus embryos by Pagliaccio, an Eph-class receptor tyrosine kinase. Dev Biol 179:309–319

    Article  CAS  PubMed  Google Scholar 

  • Wise PAD, Vickaryous MK, Russell AP (2009) An embryonic staging table for in ovo development of Eublepharis macularius, the leopard gecko. Anat Rec (Hoboken) 292:1198–1212

    Article  Google Scholar 

  • Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Woolley DM, Fawcett DW (1973) The degeneration and disappearance of the centrioles during the development of the rat spermatozoon. Anat Rec 177:289–301

    Article  CAS  PubMed  Google Scholar 

  • Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchinson TJ (2008) Evidence for an upper limit to mitotic spindle length. Curr Biol 18:1256–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wühr M, Dumont S, Groen AC, Needleman DJ, Mitchison TJ (2009) How does a millimeter-sized cell find its center? Cell Cycle 8:1115–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Wühr M, Tan ES, Parker SK, Detrich HWI, Mitchinson TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20:2040–2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wylie C (2000) Germ cells. Curr Opin Genet Dev 10:410–413

    Article  CAS  PubMed  Google Scholar 

  • Xiong F, Ma W, Hisckock TW, Mosaliganti KR, Tentner AR, Brakke KA, Rannou N, Gelas A, Souhait, Swinbume IA, Obholzer MSG (2014) Interplay of cell shape and division orientation promotes robust morphogenesis of developing epithelia. Cell 159:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu KP, Yadav BR, King WA, Betteridge KJ (1992) Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol Reprod Dev 31:249–252

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Ge X, Lindeman R, Nair S, Runke G, Mullins M, Pelegri F (2009) The maternal-effect gene cellular island encodes Aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet 5:e1000518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Zhang J, Salem SA, Liu X, Kuang Y, Salem RD, Liu J (2014) Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med Genomics 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272:483–496

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zucchelli M, Bruce S, Hambiliki F, Stavreus-Evers A, Levkov L, Skottman H, Kerselä E, Kere J, Hovatta O (2009) Transcriptome profiling of human pre-implantation development. PLoS One 4:e7844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziomek CA, Johnson MH (1980) Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935–942

    Article  CAS  PubMed  Google Scholar 

  • Zotin AI (1964) The mechanism of cleavage in amphibian and sturgeon eggs. J Embryol Exp Morphol 12:247–262

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.H. was supported by NIH grant TG 2 T32 GM007133-40 and NSF grant 1144752-IGERT, as well as the Graduate School and the College of Life Science and Agriculture at U. Wisconsin, Madison, and thanks Danielle Grotjahn for the help and discussions with related work. S.C. gratefully acknowledges the National Centers for Translational Research in Reproduction and Infertility (NCTRI)/NICHD (P50 HD071836), Howard and Georgeanna Jones Foundation for Reproductive Medicine, Medical Research Foundation of Oregon, and the Collins Medical Trust for funding. Research in the laboratory of M.D. is supported by the National Science Foundation (IOS-1557527). M.W. was supported by the Charles A. King Trust Postdoctoral Fellowship Program, Bank of America, N.A., Co-Trustee. Research in the laboratory of F.P. is supported by NIH grant RO1 GM065303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Pelegri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hasley, A., Chavez, S., Danilchik, M., Wühr, M., Pelegri, F. (2017). Vertebrate Embryonic Cleavage Pattern Determination. In: Pelegri, F., Danilchik, M., Sutherland, A. (eds) Vertebrate Development. Advances in Experimental Medicine and Biology, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-319-46095-6_4

Download citation

Publish with us

Policies and ethics