Skip to main content

The Biochemistry and Mechanics of Gastropod Adhesive Gels

  • Chapter
  • First Online:
Biological Adhesives

Abstract

Several different types of gastropods produce tough adhesive gels. These gels consist of more than 95 % water, yet they are far stiffer and tougher than the mucus used for other activities. This chapter reviews the structure and properties of adhesive gels from limpets, marsh periwinkles, terrestrial snails, and terrestrial slugs. While some of these gels contain large, entangled, carbohydrate-rich polymers such as those found in the mucus that is secreted for locomotion and lubrication, what sets the adhesive gels apart is the additional presence of substantial quantities of gel-stiffening proteins. Adhesive gels have been studied in depth in the slug Arion subfuscus. In this glue, the gel-stiffening proteins bind iron, and metals such as iron and calcium stiffen the gel. Metals bind directly to polymers in the glue and can cross-link them through coordinate covalent bonds. Additionally, key proteins in the glue are rich in carbonyls, presumably due to metal-catalyzed oxidation. These carbonyls appear to serve as sites for reversible cross-links between proteins. Furthermore, the action of the proteins does not merely stiffen the gel; it creates a second network that interpenetrates the tangled carbohydrate network creating a double network. In a double network gel, the two networks act together to achieve toughness values that are orders of magnitude greater than what they can achieve separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnhart MC (1983) Gas permeability of the epiphragm of a terrestrial snail, Otala lactea. Physiol Zool 56:436–444

    Article  Google Scholar 

  • Ben-Zion O, Nussinovitch A (1997) Hydrocolloid wet glues. Food Hydrocoll 11:429–442

    Article  CAS  Google Scholar 

  • Bikerman JJ (1958) The rheology of adhesion. In: Eirich FR (ed) Rheology: theory and applications, vol III. Academic, New York, pp 479–503

    Google Scholar 

  • Bingham FO (1972) The mucus holdfast of Littorina irrorata and its relationship to relative humidity and salinity. Veliger 15:48–50

    Google Scholar 

  • Bradshaw A, Salt M, Bell A, Zeitler M, Litra N, Smith AM (2011) Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs. J Exp Biol 214:1699–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branch GM, Marsh AC (1978) Tenacity and shell shape in six Patella species: adaptive features. J Exp Mar Biol Ecol 34:111–130

    Article  Google Scholar 

  • Braun M, Menges M, Opoku F, Smith AM (2013) The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue. J Exp Biol 216:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Callow JA, Callow ME (2006) The Ulva spore adhesive system. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin, pp 63–78

    Chapter  Google Scholar 

  • Campion M (1961) The structure and function of the cutaneous glands in Helix aspersa. Quart J Microscop Sci 102:195–216

    Google Scholar 

  • Davies MS, Hawkins SJ (1998) Mucus from marine molluscs. Adv Mar Biol 34:1–71

    Article  Google Scholar 

  • DeGennes PG, Leger L (1982) Dynamics of entangled polymer gels. Annu Rev Phys Chem 33:49–61

    Article  CAS  Google Scholar 

  • Denny MW (1983) Molecular biomechanics of molluscan mucous secretions. In: Wilbur K, Simkiss K, Hochachka PW (eds) The mollusca, vol I. Academic, New York, pp 431–465

    Google Scholar 

  • Denny MW (1984) Mechanical properties of pedal mucus and their consequences for gastropod structure and performance. Am Zool 24:23–36

    Article  Google Scholar 

  • Denny MW, Gosline JM (1980) The physical properties of the pedal mucus of the terrestrial slug Ariolimax columbianus. J Exp Biol 88:375–393

    Google Scholar 

  • Deyrup-Olsen I, Luchtel DL, Martin AW (1983) Components of mucus of terrestrial slugs (Gastropoda). Am J Physiol 245:R448–R452

    CAS  PubMed  Google Scholar 

  • Doi M, Edwards SF (1988) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Eagland D (1990) What makes stuff stick? Chemtech (April):248–254

    Google Scholar 

  • Flammang P (1996) Adhesion in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 5. Balkema, Rotterdam, pp 1–60

    Google Scholar 

  • Gay C (2002) Stickiness—some fundamentals of adhesion. Integr Comp Biol 42:1123–1126

    Article  PubMed  Google Scholar 

  • Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  • Grenon JF, Walker G (1980) Biomechanical and rheological properties of the pedal mucus of the limpet, Patella vulgata L. Comp Biochem Physiol B 66:451–458

    Google Scholar 

  • Grenon JF, Walker G (1981) The tenacity of the limpet, Patella vulgata L.: an experimental approach. J Exp Mar Biol Ecol 54:277–308

    Article  Google Scholar 

  • Hahn T, Denny M (1989) Tenacity-mediated selective predation by oystercatchers on intertidal limpets and its role in maintaining habitat partitioning by ‘Collisella’ scabra and Lottia digitalis. Mar Ecol Prog Ser 53:1–10

    Article  Google Scholar 

  • Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822

    Article  CAS  Google Scholar 

  • Hermans CO (1983) The duo-gland adhesive system. Oceanogr Mar Biol Annu Rev 21:283–339

    CAS  Google Scholar 

  • Lichtenegger HC, Birkedal H, Waite JH (2008) Heavy metals in the jaws of invertebrates. Met Ions Life Sci 4:295–325

    CAS  Google Scholar 

  • Mair J, Port GR (2002) The influence of mucus production by the slug, Deroceras reticulatum, on predation by Pterostichus madidus and Nebria brevicollis (Coleoptera: Carabidae). Biocontrol Sci Technol 12:325–335

    Article  Google Scholar 

  • Pawlicki JM, Pease LB, Pierce CM, Startz TP, Zhang Y, Smith AM (2004) The effect of molluscan glue proteins on gel mechanics. J Exp Biol 207:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Sagert J, Sun C, Waite JH (2006) Chemical subtleties of mussel and polychaete holdfasts. In: Smith AM, Callow JA (eds) Biological adhesives, 1st edn. Springer, Berlin, pp 125–143

    Chapter  Google Scholar 

  • Smith AM (1991a) Negative pressure generated by octopus suckers: a study of the tensile strength of water in nature. J Exp Biol 157:257–271

    Google Scholar 

  • Smith AM (1991b) The role of suction in the adhesion of limpets. J Exp Biol 161:151–169

    Google Scholar 

  • Smith AM (1992) Alternation between attachment mechanisms by limpets in the field. J Exp Mar Biol Ecol 160:205–220

    Article  Google Scholar 

  • Smith AM (2002) The structure and function of adhesive gels from invertebrates. Integr Comp Biol 42:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Smith AM (2010) Gastropod secretory glands and adhesive gels. In: von Byern J, Grunwald I (eds) Biological adhesive systems: from nature to technical and medical application. Springer, Berlin, pp 41–51

    Chapter  Google Scholar 

  • Smith AM (2013) Multiple metal-based cross-links: protein oxidation and metal coordination in a biological glue. In: Santos R, Aldred N, Gorb S, Flammang P (eds) Biological and biomimetic adhesives: challenges and opportunities. Royal Society of Chemistry, Cambridge, pp 3–15

    Chapter  Google Scholar 

  • Smith AM, Morin MC (2002) Biochemical differences between trail mucus and adhesive mucus from marsh periwinkles. Biol Bull 203:338–346

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Quick TJ, St. Peter RL (1999) Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. Biol Bull 196:34–44

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Robinson TM, Salt MD, Hamilton KS, Silvia BE, Blasiak R (2009) Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions. Comp Biochem Physiol B Biochem Mol Biol 152:110–117

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. J Exp Biol 207:4727–4734

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T (1981) Gels. Sci Am 244:124–138

    Article  CAS  PubMed  Google Scholar 

  • Vaughn CC, Fisher FM (1988) Vertical migration as a refuge from predation in intertidal marsh snails: a field test. J Exp Mar Biol Ecol 123:163–176

    Article  Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  • Waite JH (1983) Adhesion in bysally attached bivalves. Biol Rev Camb Philos Soc 58:209–231

    Article  CAS  Google Scholar 

  • Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81:1–21

    Article  Google Scholar 

  • Wake WC (1982) Adhesion and the formulation of adhesives. Applied Science Publishers, London

    Google Scholar 

  • Warren JH (1985) Climbing as an avoidance behaviour in the salt marsh periwinkle, Littorina irrorata (Say). J Exp Mar Biol Ecol 89:11–28

    Article  Google Scholar 

  • Wells GP (1944) The water relations of snails and slugs III. Factors determining activity in Helix pomatia L. J Exp Biol 20:79–87

    Google Scholar 

  • Werneke SW, Swann C, Farquharson LA, Hamilton KS, Smith AM (2007) The role of metals in molluscan adhesive gels. J Exp Biol 210:2137–2145

    Article  CAS  PubMed  Google Scholar 

  • Wilks AM, Rabice SR, Garbacz HS, Harro CC, Smith AM (2015) Double-network gels and the toughness of terrestrial slug glue. J Exp Biol 218:3128–3137

    Article  PubMed  Google Scholar 

  • Williams PA, Phillips GO (2000) Introduction to food hydrocolloids. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishers, Cambridge, pp 1–20

    Google Scholar 

  • Yule AB, Walker G (1987) Adhesion in barnacles. In: Southward AJ (ed) Crustacean issues: barnacle biology, vol 5. Balkema, Rotterdam, pp 389–402

    Google Scholar 

Download references

Acknowledgments

I would like to thank R. Shadwick for comments on the manuscript and J. H. Waite and S. Werneke for helpful discussions. This work was supported by an Ithaca College summer grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smith, A.M. (2016). The Biochemistry and Mechanics of Gastropod Adhesive Gels. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_8

Download citation

Publish with us

Policies and ethics