Skip to main content

The Adhesive Tape-Like Silk of Aquatic Caddisworms

  • Chapter
  • First Online:
Book cover Biological Adhesives

Abstract

Aquatic caddisfly larva spin a sticky silk tape used underwater to construct a protective composite stone case. Caddisworm silk fibers are drawn on-demand from fluid precursors stored in the posterior region of the silk gland. Fibers begin to form in the gland at a cuticular narrowing at the entrance into the short (2–3 mm) anterior conducting channel leading to the spinneret. The caddisworm silk comprises a thin adhesive peripheral coating on a tough viscoelastic core fiber. The thin adhesive layer contains glycoproteins and a heme-peroxidase in the peroxinectin subfamily (Pxt). Pxt catalyzes dityrosine cross-linking in the fiber periphery and may catalyze covalent adhesive cross-links to surface-active natural polyphenolic compounds. The major component of the silk core, H-fibroin, contains around 13 mol% phosphoserines (pS) in repeating (pSX) n motifs, wherein X is usually hydrophobic, and n is 4 or 5. The (pSX) n motifs form β-domains crossbridged and stabilized by multivalent metal ions, predominantly Ca2+ in natural fibers. During loading, the Ca2+/(pSX) n β-domains reversibly rupture to reveal hidden length and dissipate strain energy. The tough fibers can be strained to more than 100 % of their initial length before fracture. The work of extension to failure, ~17.3 ± 6.2 MJ/m3, is higher than articular cartilage. Silk fibers cycled to 20 % elongation completely recover their initial stiffness, strength, and hysteresis within 120 min as an elastic covalent network guides the post-yield recovery of the Ca2+/(pSX) n β-domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison JB et al (2013) β-sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid-state NMR and XRD study. Biomacromolecules 14:1140–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addison JB et al (2014) Reversible assembly of β-sheet nanocrystals within caddisfly silk. Biomacromolecules 15:1269–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton NN, Stewart RJ (2015) Self-recovering caddisfly silk: energy dissipating, Ca2+ -dependent, double dynamic network fibers. Soft Matter 11:1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Ashton NN, Taggart DS, Stewart RJ (2012) Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers 97:432–445

    Article  CAS  PubMed  Google Scholar 

  • Ashton NN, Roe DR, Weiss RB, Cheatham TE, Stewart RJ (2013) Self-tensioning aquatic caddisfly silk: Ca2+‐dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14:3668–3681

    Article  CAS  PubMed  Google Scholar 

  • Beams HW, Sekhon SS (1966) Morphological studies on secretion in the silk glands of the caddis fly larvae Platyphylax designatus Walker. Zeitschrift für Zellforsch und Mikroskopische Anat 72:408–414

    Article  CAS  Google Scholar 

  • Blough NV, Ziepp RG (1995) Reactive oxygen species in natural waters, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Chawla KK (1998) Fibrous materials. Cambridge University Press, New York City

    Book  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  • Dobson CM, Šali A, Karplus M (1998) Protein folding: a perspective from theory and experiment. Angew Chem Int Ed 37:868–893

    Article  Google Scholar 

  • Du N, Yang Z, Liu XY, Li Y, Xu HY (2011) Structural origin of the strain-hardening of spider silk. Adv Funct Mater 21:772–778

    Article  CAS  Google Scholar 

  • Elices M, Plaza GR, Pérez‐Rigueiro J, Guinea GV (2011a) The hidden link between supercontraction and mechanical behavior of spider silks. J Mech Behav Biomed Mater 4:658–669

    Article  PubMed  Google Scholar 

  • Elices M, Guinea GV, Pérez-Rigueiro J, Plaza GR (2011b) Polymeric fibers with tunable properties: lessons from spider silk. Mater Sci Eng C 31:1184–1188

    Article  CAS  Google Scholar 

  • Engster MS (1976a) Studies on silk secretion in the Trichoptera (F. Limnephilidae): II. Structure and amino acid composition of the silk. Cell Tissue Res 169:77–92

    Article  CAS  PubMed  Google Scholar 

  • Engster M (1976b) Studies on silk secretion in the trichoptera (F. Limnephilidae): I. Histology, histochemistry, and ultrastructure of the silk glands. J Morphol 150:183–212

    Article  Google Scholar 

  • Glasgow JP (1936) Internal anatomy of Caddis (Hydropsyche colonica). Q J Microsc Sci 79:151–179

    Google Scholar 

  • Haque MA, Kurokawa T, Kamita G, Gong JP (2011) Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44:8916–8924

    Article  CAS  Google Scholar 

  • Harrington MJ, Gupta HS, Fratzl P, Waite JH (2009) Collagen insulated from tensile damage by domains that unfold reversibly: in situ X‐ray investigation of mechanical yield and damage repair in the mussel byssus. J Struct Biol 167:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatano T, Nagashima T (2015) The secretion process of liquid silk with nanopillar structures from Stenopsyche marmorata (Trichoptera: Stenopsychidae). Sci Rep 5:9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearle JWS (2007) Protein fibers: structural mechanics and future opportunities. J Mater Sci 42:8010–8019

    Article  CAS  Google Scholar 

  • Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  • Hertner T, Eppenberger HM, Lezzi M (1983) The giant secretory proteins of Chironomus tentans salivary glands: the organization of their primary structure, their amino acid and carbohydrate composition. Chromosoma 88:194–200

    Article  CAS  Google Scholar 

  • Jonker JL, Morrison L, Lynch EP, Grunwald I, von Byern J, Power AM (2015) The chemistry of stalked barnacle adhesive (Lepas anatifera). Interface Focus 5(1):20140062. doi:10.1098/rsfs.2014.0062

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane DD, Kaur S, Weerasakare GM, Stewart RJ (2015) Toughened hydrogels inspired by aquatic caddisworm silk. Soft Matter 11:6981–6990

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Hsin J, Mayans O, Schulten K (2007) Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model. Biophys J 93:1719–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1960) Comparative studies of fibroins: I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 52:339–349

    Article  Google Scholar 

  • Malm T, Johanson KA, Wahlberg N (2013) The evolutionary history of Trichoptera (Insecta): a case of successful adaptation to life in freshwater. Syst Entomol 38:459–473

    Article  Google Scholar 

  • Merritt RW, Cummins KW (2008) An introduction to the aquatic insects of North America. Kendall Hunt Pub Co, Dubuque

    Google Scholar 

  • Mitchinson NA (1974) Tanned silks. Proc R Soc Lond B 187:133–170

    Article  Google Scholar 

  • Mori K et al (1995) Production of a chimeric fibroin light‐chain polypeptide in a fibroin secretion‐deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol 251:217–228

    Article  CAS  PubMed  Google Scholar 

  • Nagy A et al (2005) Hierarchical extensibility in the PEVK domain of skeletal‐muscle titin. Biophys J 89:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naskar D, Barua RR, Ghosh AK, Kundu SC (2014) In: Kundu SC (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing, Cambridge, p 15

    Google Scholar 

  • Ohkawa K, Miura Y, Nomura T, Arai R (2012) Isolation of silk proteins from a Caddisfly Larva Stenopsyche Marmorata. J Fiber Bioeng Inform 5:125–137

    Article  Google Scholar 

  • Ohkawa K et al (2013) Long-range periodic sequence of the cement/silk protein of Stenopsyche marmorata : purification and biochemical characterisation. J Bioadhes Biofilm Res 29:357–367

    Article  CAS  Google Scholar 

  • Packard AS (1898) A text-book of entomology. The MacMillan Company, New York

    Google Scholar 

  • Patra S, Singh RN, Raziuddin M (2012) Morphology and Histology of Lyonet’ s Gland of the Tropical Tasar Silkworm, Antheraea mylitta Morphology and histology of Lyonet’ s gland of the tropical tasar silkworm Antheraea mylitta. J Insect Sci 12:1–7

    Article  Google Scholar 

  • Pollock CM, Shadwick RE (1994) Relationship between body mass and biomechanical properties of limb tendons in adult mammals. Am J Physiol 266:1016–1021

    Google Scholar 

  • Rapoport HS, Shadwick RE (2007) Reversibly labile, sclerotization-induced elastic properties in a keratin analog from marine snails: whelk egg capsule biopolymer. J Exp Biol 210:12–26

    Article  CAS  PubMed  Google Scholar 

  • Riek E (1976) The marine caddisfly family Chathamiidae (Trichoptera). Aust J Entomol 15(4):405–419

    Article  Google Scholar 

  • Rudall K, Kenchington W (1971) Arthropod silks: the problem of fibrous proteins in animal tissues. Annu Rev Entomol 16:73–96

    Article  CAS  Google Scholar 

  • Soudi M, Zamocky M, Jakopitsch C, Furtmüller PG, Obinger C (2012) Molecular evolution, structure, and function of peroxidasins. Chem Biodivers 9:1776–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanhoff B, Schulte U, Alecke C, Kaschek N, Meyer EI (2003) Mouthparts, gut contents, and retreat-construction by the wood-dwelling larvae of Lype phaeopa. Eur J Entomol 100:563–570

    Article  Google Scholar 

  • Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H‐fibroin serines. Biomacromolecules 11:969–974

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Ransom TC, Hlady V (2011) Natural underwater adhesives. J Polym Sci B Polym Phys 49:757–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strzelecki JW et al (2011) Nanomechanics of new materials-AFM and computer modelling studies of trichoptera silk. Cent Eur J Phys 9:482–491

    CAS  Google Scholar 

  • Sun J-Y et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K et al (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  CAS  PubMed  Google Scholar 

  • Tszydel M et al (2009) Structure and physical and chemical properties of fibres from the fifth larval instar of caddis‐flies of the species Hydropsyche angustipennis. Fibres Text East Eur 17:7–12

    CAS  Google Scholar 

  • Tulachan B et al (2014) Electricity from the silk cocoon membrane. Sci Rep 4:5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Stewart RJ (2013) Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 14:1607–1617

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Ashton NN, Weiss RB, Stewart RJ (2014) Peroxinectin catalyzed dityrosine cross-linking in the adhesive underwater silk of a casemaker caddisfly larvae Hysperophylax occidentalis. Insect Biochem Mol Biol 54C:69–79

    Article  Google Scholar 

  • Wang CS, Pan H, Weerasekare GM, Stewart RJ (2015) Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. J R Soc Interface 12(112). doi:10.1098/rsif.2015.0710

    Google Scholar 

  • Warwicker JO (1960) Comparative studies of fibroins II. The crystal structure of various fibroins. J Mol Biol 2(6):350

    Article  CAS  PubMed  Google Scholar 

  • Wiggins GB (2004) Caddisflies: the underwater architects. University of Toronto Press, Toronto

    Google Scholar 

  • Yonemura N, Sehnal F, Mita K, Tamura T (2006) Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7:3370–3378

    Article  CAS  PubMed  Google Scholar 

  • Yonemura N, Mita K, Tamura T, Sehnal F (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman SS, Scheraga HA (1977) Influence of local interactions on protein structure. I. Conformational energy studies of N‐acetyl‐N′‐methylamides of Pro-X and X­Pro dipeptides. Biopolymers 16:811–843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding from the Army Research Office is gratefully acknowledged. We thank Nancy Chandler for the assistance with TEM and Daniel Taggart for the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashton, N.N., Wang, CS., Stewart, R.J. (2016). The Adhesive Tape-Like Silk of Aquatic Caddisworms. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_5

Download citation

Publish with us

Policies and ethics