Skip to main content

High-Strength Adhesive Exuded from the Adventitious Roots of English Ivy

  • Chapter
  • First Online:
Biological Adhesives

Abstract

As a trending topic in recent years, tremendous efforts in the exploration of molecular bases for a variety of adhesive events in diverse biological organisms have considerably improved our understanding of relevant principles capable of being implemented as guidelines for directing the design and development of adhesive biomaterials and devices with expected functionalities. In this chapter, we focus on describing the recent advance in the exploration of a high-strength bioadhesive derived from the adventitious roots of English ivy (Hedera helix), which is a root climber that possesses strong capacity to cling vertical surfaces. The molecular mechanisms underlying this high-strength adhesive, especially the intriguing roles of bulk glycoprotein-rich spherical nanoparticles in favoring the generation of strong adhesion strength within the adhesive substances, are discussed in detail. Relevant progress in the development of ivy-mimetic and ivy-inspired adhesive composites is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    Article  CAS  PubMed  Google Scholar 

  • Baldwin TC, McCann MC, Roberts K (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota (purification and partial characterization). Plant Physiol 103(1):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Cohen Y (2005) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Bhushan B (2007) Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol 21(12–13):1213–1258

    Article  CAS  Google Scholar 

  • Bowling A, Vaughn K (2008a) Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.). Protoplasma 232(3-4):153–163

    Article  CAS  PubMed  Google Scholar 

  • Bowling AJ, Vaughn KC (2008b) Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot 95(6):655–663

    Article  PubMed  Google Scholar 

  • Bowling AJ, Vaughn KC (2009) Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96(4):719–727

    Article  PubMed  Google Scholar 

  • Bowling AJ, Maxwell HB, Vaughn KC (2008) Unusual trichome structure and composition in mericarps of catchweed bedstraw (Galium aparine). Protoplasma 233(3-4):223–230

    Article  PubMed  Google Scholar 

  • Budhlall B, Shaffer O, Sudol E, Dimonie V, El-Aasser M (2003) Atomic force microscopy studies of the film surface characteristics of poly (vinyl acetate) latexes prepared with poly (vinyl alcohol). Langmuir 19(23):9968–9972

    Article  CAS  Google Scholar 

  • Burnham RJ, Revilla-Minaya C (2011) Phylogenetic influence on twining chirality in lianas from Amazonian Peru 1. Ann MO Bot Gard 98(2):196–205

    Article  Google Scholar 

  • Burris JN, Lenaghan SC, Zhang M, Stewart CN (2012) Nanoparticle biofabrication using English ivy (Hedera helix). J Nanobiotechnol 10:41

    Article  CAS  Google Scholar 

  • Cai HH, Li SD, Tian GR, Wang HB, Wang JH (2003) Reinforcement of natural rubber latex film by ultrafine calcium carbonate. J Appl Polym Sci 87(6):982–985

    Article  CAS  Google Scholar 

  • Callow JA, Callow ME (2006) The Ulva spore adhesive system. In: Biological adhesives. Springer, Heidelberg, pp 63–78

    Google Scholar 

  • Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DT, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105(6):2226–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3(5):631

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Fischer S, Men Y (2011a) Temperature and relative humidity dependency of film formation of polymeric latex dispersions. Langmuir 27(21):12807–12814

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Fischer S, Yi Z, Boyko V, Terrenoire A, Reinhold F, Rieger J, Li X, Men Y (2011b) Structural reorganization of a polymeric latex film during dry sintering at elevated temperatures. Langmuir 27(13):8458–8463

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Gleeson P, Harrison S, Knox RB (1979) Pollen-stigma interactions: identification and characterization of surface components with recognition potential. Proc Natl Acad Sci USA 76(7):3358–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comyn J (1997) Adhesion science, vol 13. Royal Society of Chemistry, London

    Google Scholar 

  • Crawford BCW, Yanofsky MF (2008) The formation and function of the female reproductive tract in flowering plants. Curr Biol 18(20):R972–R978

    Article  CAS  PubMed  Google Scholar 

  • Crawford BC, Ditta G, Yanofsky MF (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol 17(13):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Damico DJ (2005) Advances in adhesives, adhesion science, and testing, vol 1463. ASTM International, West Conshohocken, PA

    Book  Google Scholar 

  • Darwin C (1865) On the movements and habits of climbing plants. J Linnean Soc Lond Bot 9(33-34):1–118

    Article  Google Scholar 

  • Demarty M, Morvan C, Thellier M (1984) Calcium and the cell wall. Plant Cell Environ 7(6):441–448

    Article  CAS  Google Scholar 

  • Du H, Simpson RJ, Moritz RL, Clarke AE, Bacic A (1994) Isolation of the protein backbone of an arabinogalactan-protein from the styles of Nicotiana alata and characterization of a corresponding cDNA. Plant Cell Online 6(11):1643–1653

    Article  CAS  Google Scholar 

  • Duncan B, Mera R, Leatherdale D, Taylor M, Musgrove R (2005) NPL Report

    Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153(2):403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endress AG, Thomson WW (1976) Ultrastructural and cytochemical studies on the developing adhesive disc of Boston ivy tendrils. Protoplasma 88(2–4):315–331

    Article  Google Scholar 

  • Fant C, Elwing H, Höök F (2002) The influence of cross-linking on protein-protein interactions in a marine adhesive: the case of two byssus plaque proteins from the blue mussel. Biomacromolecules 3(4):732–741

    Article  CAS  PubMed  Google Scholar 

  • Favi PM, Yi S, Lenaghan SC, Xia L, Zhang M (2014) Inspiration from the natural world: from bio-adhesives to bio-inspired adhesives. J Adhes Sci Technol 28(3-4):290–319

    Article  CAS  Google Scholar 

  • Ferguson CJ (2000) Core-shell polymers from styrene and vinyl acetate for use as wood adhesives. A thesis submitted in partial fulfilment of the requirements for the degree of doctor of philosophy in chemistry at the University of Canterbury, Christchurch. University of Canterbury, New Zealand

    Google Scholar 

  • Ferris PJ, Woessner JP, Waffenschmidt S, Kilz S, Drees J, Goodenough UW (2001) Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. Biochemistry (Mosc) 40(9):2978–2987

    Article  CAS  Google Scholar 

  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis, and function. Annu Rev Plant Physiol 34(1):47–70

    Article  CAS  Google Scholar 

  • Ge X, Chang F, Ma H (2010) Signaling and transcriptional control of reproductive development in Arabidopsis. Curr Biol 20(22):R988–R997

    Article  CAS  PubMed  Google Scholar 

  • Groot E, Sweeney E, Rost T (2003) Development of the adhesive pad on climbing fig (Ficus pumila) stems from clusters of adventitious roots. Plant Soil 248(1–2):85–96

    Article  CAS  Google Scholar 

  • Hansen W, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102(2):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Lenaghan SC, Xia L, Burris JN, Stewart CN Jr, Zhang M (2013) Characterization of physicochemical properties of ivy nanoparticles for cosmetic application. J Nanobiotechnol 11(1):1–12

    Article  Google Scholar 

  • Huang Y, Wang Y-J, Wang Y, Yi S, Fan Z, Sun L, Lin D, Anreddy N, Zhu H, Schmidt M (2015) Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater 25:268–283

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wang Y, Tan L, Sun L, Petrosino J, Cui M-Z, Hao F, Zhang M (2016) Nano-spherical arabinogalactan protein: a key component in the high-strength adhesive secreted by English ivy. Proc Natl Acad Sci USA 113:E3193–E3202

    Article  CAS  PubMed  Google Scholar 

  • Immerzeel P, Eppink MM, De Vries SC, Schols HA, Voragen AG (2006) Carrot arabinogalactan proteins are interlinked with pectins. Physiol Plant 128(1):18–28

    Article  CAS  Google Scholar 

  • Isnard S, Cobb AR, Holbrook NM, Zwieniecki M, Dumais J (2009) Tensioning the helix: a mechanism for force generation in twining plants. Proc R Soc Lond B Biol Sci 276:2643–2650

    Article  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7(3):153–164

    CAS  Google Scholar 

  • Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, Antonov L, Tanaka H, Takahashi T, Kaneko S, Dupree P (2013) β-Galactosyl yariv reagent binds to the β-1, 3-galactan of arabinogalactan proteins. Plant Physiol 161(3):1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamport DT, Kieliszewski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169(3):479–492

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Park JH, Robinson JR (2000) Bioadhesive-based dosage forms: the next generation. J Pharm Sci 89(7):850–866

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103(35):12999–13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenaghan SC, Zhang M (2012) Real-time observation of the secretion of a nanocomposite adhesive from English ivy (Hedera helix). Plant Sci (Amsterdam, Neth) 183:206–211

    Google Scholar 

  • Lenaghan SC, Burris JN, Chourey K, Huang Y, Xia L, Lady B, Sharma R, Pan C, LeJeune Z, Foister S (2013) Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.). J R Soc Interface 10(87):20130392

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11(1):49–59

    Article  Google Scholar 

  • Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104(10):3782–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majester-Savornin B, Elias R, Diaz-Lanza A, Balansard G, Gasquet M, Delmas F (1991) Saponins of the ivy plant, Hedera helix, and their leishmanicidic activity. Planta Med 57(3):260–262

    Article  CAS  PubMed  Google Scholar 

  • Matos-Pérez CR, White JD, Wilker JJ (2012) Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 134(22):9498–9505

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13(3):271–288

    Article  CAS  PubMed  Google Scholar 

  • Mehdizadeh M, Weng H, Gyawali D, Tang L, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33(32):7972–7983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meloche CG, Knox JP, Vaughn KC (2007) A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta 225(2):485–498

    Article  CAS  PubMed  Google Scholar 

  • Melzer B, Steinbrecher T, Kraft O, Schwaiger R, Speck T (2008) Anhaftungsmechanismen von Efeu (Hedera helix L.): Erste Ergebnisse zu Struktur und Funktionsweise. In: Bionik: Patente aus der Natur, 4. Bionik Kongress, pp 284–289

    Google Scholar 

  • Melzer B, Steinbrecher T, Seidel R, Kraft O, Schwaiger R, Speck T (2010) The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J R Soc Interface 7(50):1383–1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Men Y (2012) Crystallographic deformation in mechanically soft colloidal crystals derived from polymeric latex dispersions. Soft Matter 8(21):5723–5727

    Article  CAS  Google Scholar 

  • Metcalfe DJ (2005) Hedera helix L. J Ecol 93(3):632–648

    Article  Google Scholar 

  • Ninan L, Stroshine R, Wilker J, Shi R (2007) Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa. Acta Biomater 3(5):687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberhuber W, Bauer H (1991) Photoinhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees. Planta 185(4):545–553

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  Google Scholar 

  • Park K, Park H (1990) Test methods of bioadhesion. In: Bioadhesive drug delivery systems. CRC Press, Boca Raton, FL, pp 43–64

    Google Scholar 

  • Peattie AM (2009) Functional demands of dynamic biological adhesion: an integrative approach. J Comp Physiol B 179(3):231–239

    Article  PubMed  Google Scholar 

  • Petrie E (2007) Handbook of adhesives and sealants. McGraw-Hill Education, London

    Google Scholar 

  • Poon S, Heath RL, Clarke AE (2012) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160(2):684–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogler CE, Hackett WP (1975) Phase change in Hedera helix: stabilization of the mature form with abscisic acid and growth retardants. Physiol Plant 34(2):148–152

    Article  CAS  Google Scholar 

  • Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L (2014) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385

    Article  CAS  PubMed  Google Scholar 

  • Rowe NP, Isnard S, Gallenmüller F, Speck T (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. Taylor & Francis, Boca Raton, FL, pp 35–59

    Google Scholar 

  • Sardar HS, Yang J, Showalter AM (2006) Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cells. Plant Physiol 142(4):1469–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidelmann K, Melzer B, Speck T (2012) The complex leaves of the monkey’s comb (Amphilophium crucigerum, Bignoniaceae): a climbing strategy without glue. Am J Bot 99(11):1737–1744

    Article  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  CAS  PubMed  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3(11):836–847

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826

    Article  CAS  Google Scholar 

  • Showalter A (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58(10):1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Silk WK, Hubbard M (1991) Axial forces and normal distributed loads in twining stems of morning glory. J Biomech 24(7):599–606

    Article  CAS  PubMed  Google Scholar 

  • Stevens MJ, Steren RE, Hlady V, Stewart RJ (2007) Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23(9):5045–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Qiu F, Lamport DTA, Kieliszewski MJ (2004) Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J Biol Chem 279(13):13156–13165

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell Online 25(1):270–287

    Article  CAS  Google Scholar 

  • Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci USA 103(51):19320–19325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobler F (1912) Die Gattung Hedera: Studien über Gestalt und Leben des Efeus, seine Arten und Geschichte. Fischer, Berlin

    Google Scholar 

  • Vaughn KC, Bowling AJ (2011) Biology and physiology of vines. Hortic Rev 38:1–21

    CAS  Google Scholar 

  • Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE, Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332(6036):1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212(4498):1038–1040

    Article  CAS  PubMed  Google Scholar 

  • Winnik MA, Yekta A (1997) Associative polymers in aqueous solution. Curr Opin Colloid Interface Sci 2(4):424–436

    Article  CAS  Google Scholar 

  • Xia L, Lenaghan SC, Zhang M, Wu Y, Zhao X, Burris JN, Stewart CN Jr (2011) Characterization of English ivy (Hedera helix) adhesion force and imaging using atomic force microscopy. J Nanopart Res 13(3):1029–1037

    Article  Google Scholar 

  • Xie D, Guo J, Mehdizadeh MR, Tran RT, Chen R, Sun D, Qian G, Jin D, Bai X, Yang J (2015) Development of injectable citrate-based bioadhesive bone implants. J Mater Chem B 3(3):387–398

    Article  CAS  Google Scholar 

  • Xu J, Tan L, Goodrum KJ, Kieliszewski MJ (2007) High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol Bioeng 97(5):997–1008

    Article  CAS  PubMed  Google Scholar 

  • Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20(6):1623–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hu S, Rieger J, Roth SV, Gehrke R, Men Y (2008a) Effect of annealing on the deformation mechanism of a styrene/n-butyl acrylate copolymer latex film investigated by synchrotron small-angle X-ray scattering. Macromolecules 41(12):4353–4357

    Article  CAS  Google Scholar 

  • Zhang M, Liu M, Prest H, Fischer S (2008b) Nanoparticles secreted from ivy rootlets for surface climbing. Nano Lett 8(5):1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bré LP, Zhao T, Zheng Y, Newland B, Wang W (2014) Mussel-inspired hyperbranched poly (amino ester) polymer as strong wet tissue adhesive. Biomaterials 35(2):711–719

    Article  PubMed  Google Scholar 

  • Zhu Z, Zhai Y, Zhang N, Leng D, Ding P (2013) The development of polycarbophil as a bioadhesive material in pharmacy. Asian J Pharm Sci 8(4):218–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Zhang Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, Y., Zhang, M. (2016). High-Strength Adhesive Exuded from the Adventitious Roots of English Ivy. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_14

Download citation

Publish with us

Policies and ethics