Skip to main content

Unraveling the Design Principles of Black Widow’s Gumfoot Glue

  • Chapter
  • First Online:
Biological Adhesives

Abstract

Prey capture adhesives produced by web-building spiders have intrigued humans for many years and provide important insights to develop adhesives that work in humid environments. These humidity-responsive glues are laid down by spiders in various types of webs, primarily orb webs and cobwebs. The formation and function of viscid glue in the capture spirals of orb webs is well-studied compared to the vertically aligned gumfoot glue strands in cobwebs. While the glue droplets in cobwebs contain some peptides, they act as viscoelastic liquids, rather than viscoelastic solids, and the cause of glue stickiness is poorly understood. However, the recent discovery of glycoproteins and hygroscopic salts in the gumfoot adhesives brings a new perspective to explain the mechanism of adhesion of these microscopic droplets. In this chapter, we summarize the current state of our understanding of the chemical composition, morphology, and mechanism of adhesion of gumfoot glue threads. Additionally, we present molecular evidence that both salts and glycoproteins are important for strong adhesion in a humid environment and show how understanding the mechanism of cobweb spider adhesives will help in designing materials that are active and functional in high humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarpuri G, Zhang C, Diaz C, Opell BD, Blackledge TA, Dhinojwala A (2015) Spiders tune glue viscosity to maximize adhesion. ACS Nano 9:11472–11478

    Article  CAS  PubMed  Google Scholar 

  • Argintean S, Chen J, Kim M, Moore AMF (2006) Resilient silk captures prey in black widow cobwebs. Appl Phys A 82:235–241

    Article  CAS  Google Scholar 

  • Benjamin SP, Zschokke S (2003) Webs of theridiid spiders: construction, structure and evolution. Biol J Linn Soc 78:293–305

    Article  Google Scholar 

  • Blackledge TA, Zevenbergen JM (2007) Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Anim Behav 73:855–864

    Article  Google Scholar 

  • Blackledge TA, Coddington J, Gillespie R (2003) Are three‐dimensional spider webs defensive adaptations? Ecol Lett 6:13–18

    Article  Google Scholar 

  • Blackledge TA, Summers AP, Hayashi CY (2005a) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology (Jena) 108:41–46

    Article  Google Scholar 

  • Blackledge TA, Swindeman JE, Hayashi CY (2005b) Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J Exp Biol 208:1937–1949

    Article  PubMed  Google Scholar 

  • Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casem M, Turner D, Houchin K (1999) Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow). Int J Biol Macromol 24:103–108

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin R, Ivie W (1935) The black widow spider and its varieties in the United States. Bull Univ Utah 25:1–29

    Google Scholar 

  • Creager MS, Jenkins JE, Thagard-Yeaman LA, Brooks AE, Jones JA, Lewis RV, Holland GP, Yarger JL (2010) Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomacromolecules 11:2039–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Amour F, Becker F, van Riper W (1936) The black widow spider. Q Rev Biol 11:123–160

    Article  Google Scholar 

  • Eberhard WG, Agnarsson I, Levi HW (2008) Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. Syst Biodivers 6:415–475

    Article  Google Scholar 

  • Finkelstein A, Rubin LL, Tzeng MC (1976) Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science 193:1009–1011

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF (1982) Biology of spiders. Harvard University Press, Harvard

    Google Scholar 

  • Frontali N, Ceccarelli B, Gorio A, Mauro A, Siekevitz P, Tzeng MC, Hurlbut WP (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol 68:462–479

    Article  CAS  PubMed  Google Scholar 

  • Garb JE, González A, Gillespie RG (2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol 31:1127–1142

    Article  PubMed  Google Scholar 

  • Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool J Linn Soc 123:1–99

    Article  Google Scholar 

  • Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, Sparkman OD, Vierra C (2005a) Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J Biol Chem 280:21220–21230

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Lawrence B, Kohler K, Falick AM, Moore AMF, McMullen E, Jones PR, Vierra C (2005b) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Zhang C, Cool LR, Blackledge TA, Wesdemiotis C, Miyoshi T, Dhinojwala A (2015) Composition and function of spider glues maintained during the evolution of cobwebs. Biomacromolecules 16:3373–3380

    Article  CAS  PubMed  Google Scholar 

  • Jenkins J, Sampath S, Butler E, Kim J, Henning RW, Holland GP, Yarger JL (2013) Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14:3472–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly S (1989) The chemical composition of the defensive secretion of the spider Latrodectus mactans (Fabricius). MS Thesis, University of New Hampshire

    Google Scholar 

  • Kovoor J (1977) Données histochimiques sur les glandes séricigènes de la veuve noire Latrodectus mactans Fabr. (Araneae, Theridiidae). Ann Sci Nat Zool Biol Anim 12e Sér 19:63–87

    Google Scholar 

  • Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Lawrence BA, Vierra CA, Moore AMF (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5:689–695

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sponner A, Porter D, Vollrath F (2008) Proline and processing of spider silks. Biomacromolecules 9:116–121

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi J, Scheer H, Madeddu L, Wanke E (1986) Mechanism of action of α-latrotoxin: the presynaptic stimulatory toxin of the black widow spider venom. Trends Pharmacol Sci 7:151–155

    Article  CAS  Google Scholar 

  • Moore AMF, Tran K (1999) Material properties of cobweb silk from the black widow spider Latrodectus hesperus. Int J Biol Macromol 24:277–282

    Article  CAS  PubMed  Google Scholar 

  • Opell BD, Karinshak SE, Sigler MA (2011) Humidity affects the extensibility of an orb-weaving spider’s viscous thread droplets. J Exp Biol 214:2988–2993

    Article  PubMed  Google Scholar 

  • Opell BD, Karinshak SE, Sigler MA (2013) Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spider orb-webs. J Exp Biol 216:3023–3034

    Article  PubMed  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  PubMed  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2011a) A review on spider silk adhesion. J Adhes 87:595–614

    Article  CAS  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2011b) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Commun 3:1106

    Article  PubMed  Google Scholar 

  • Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A (2014) Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15:1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Salles HC, Volsi ECFR, Marques MR, Souza BM, dos Santos LD, Tormena CF, Mendes MA, Palma MS (2006) The venomous secrets of the web droplets from the viscid spiral of the orb-weaver spider Nephila clavipes (Araneae, Tetragnathidae). Chem Biodivers 3:727–741

    Article  CAS  PubMed  Google Scholar 

  • Schulz S (1997) The chemistry of spider toxins and spider silk. Angew Chem Int Ed Engl 36:314–326

    Article  CAS  Google Scholar 

  • Schulz S (1999) Structural diversity of surface lipids from spiders. In: Diederichsen U, Lindhorst TK, Westermann B, Wessjohann LA (eds) Bioorganic chemistry: highlights and new aspects. Wiley-VCH, Weinheim

    Google Scholar 

  • Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647

    Article  CAS  PubMed  Google Scholar 

  • Swanson BO, Blackledge TA, Beltrán J, Hayashi CY (2006) Variation in the material properties of spider dragline silk across species. Appl Phys A 82:213–218

    Article  CAS  Google Scholar 

  • Townley MA, Tillinghast EK (2013) Aggregate silk gland secretions of araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 283–302

    Chapter  Google Scholar 

  • Townley MA, Bernstein DT, Gallagher KS, Tillinghast EK (1991) Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J Exp Zool 259:154–165

    Article  Google Scholar 

  • Townley MA, Pu Q, Zercher CK, Neefus CD, Tillinghast EK (2012) Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): β-alaninamide is a novel and abundant component. Chem Biodivers 9:2159–2174

    Article  CAS  PubMed  Google Scholar 

  • Ushkaryov YA, Volynski KE, Ashton AC (2004) The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 43:527–542

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada K, Hu X, Falick AM, La Mattina C, Moore AMF, Jones PR, Yee R, Reza R, Tuton T, Vierra C (2007) Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. J Biol Chem 282:35088–35097

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada K, Hu X, Tuton-Blasingame T, Hsia Y, Sampath S, Pacheco R, Freeark J, Falick AM, Tang S, Fong J, Kohler K, La Mattina-Hawkins C, Vierra C (2012) Spider glue proteins have distinct architectures compared with traditional spidroin family members. J Biol Chem 287:35986–35999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks and webs. Annu Rev Ecol Evol Syst 38:819–846

    Article  Google Scholar 

  • Vollrath F, Fairbrother WJ, Williams RJ, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–527

    Article  CAS  Google Scholar 

  • Xu D, Yarger JL, Holland GP (2014) Exploring the backbone dynamics of native spider silk proteins in Black Widow silk glands with solution-state NMR spectroscopy. Polymer 55:3879–3885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to the National Science Foundation (NSF) for funding the NMR studies on gumfoot silk, Bill Hsuing for the help in the collection of major ampullate silk from silk glands of Black Widow, Sarah Han and Dr. Matjaz Gregoric for pictures in Fig.13.1 and Fig.13.3 respectively and Dr. Wei Chen for the assistance in solid-state NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dhinojwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jain, D., Blackledge, T.A., Miyoshi, T., Dhinojwala, A. (2016). Unraveling the Design Principles of Black Widow’s Gumfoot Glue. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_13

Download citation

Publish with us

Policies and ethics