Extreme-Scale In Situ Visualization of Turbulent Flows on IBM Blue Gene/Q JUQUEEN

  • Jens Henrik GöbbertEmail author
  • Mathis Bode
  • Brian J. N. Wylie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9945)


Extracting and analyzing detailed information from large simulations is of crucial importance for science. However, with the increasing problem size of current simulations, the process of visualizing and understanding big simulation raw data becomes more difficult and needs additional effort. More precisely, the gap between compute and I/O performance is widening with current supercomputers. Thus, the classical approach of visualizing simulation results in a post-processing step is limited or even impossible for extreme-scale scenarios. One promising technique to overcome this issue is in situ visualization, which visualizes and analyzes simulation data during simulation runtime. Within this work, in situ visualization using VisIt/Libsim has been added to the CIAO code framework for interactive- and batch-mode visualization on JUQUEEN, an IBM Blue Gene/Q system with 458 752 cores. Full-system runs are demonstrated and early results of performance measurements of an extreme-scale multiphase case are discussed.


In-Situ visualization VisIt/Libsim Blue Gene/Q Scalasca 



The authors gratefully acknowledge the computing time granted for the project JHPC18 by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN [17] at Forschungszentrum Jülich.


  1. 1.
    Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. IEEE (2009)Google Scholar
  2. 2.
    The HDF Group Hierarchical data format (hdf), version 5 (1997–2015).
  3. 3.
    Ma, K.-L.: In-situ visualization at extreme scale: challenges and opportunities. IEEE Comput. Graphics Appl. 29(6), 14–19 (2009)CrossRefGoogle Scholar
  4. 4.
    Kitware: ParaView (2002–2016).
  5. 5.
    Ayachit, U., et al.: Paraview catalyst: enabling in-situ data analysis and visualization. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29. ACM (2015)Google Scholar
  6. 6.
    LLNL: VisIT Visualization Tool (2002–2016).
  7. 7.
    Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization - Enabling Extreme-Scale Scientific Insight, pp. 357–372 (2012)Google Scholar
  8. 8.
    Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in-situ coupling of a simulation with a fully featured visualization system. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 101–109 (2011)Google Scholar
  9. 9.
    Blender Online Community: Blender - a 3D modelling and rendering package (2016).
  10. 10.
    Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 498, 73–111 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bode, M., Falkenstein, T., Chenadec, V.L., Pitsch, H., Arima, T., Taniguchi, H.: A new Euler/Lagrange approach for multiphase simulations of a multi-hole GDI injector, SAE Paper 2015–01-0949 (2015)Google Scholar
  12. 12.
    Bode, M., Falkenstein, T., Pitsch, H., Kimijima, T., Taniguchi, H., Arima, T.: Numerical study of the impact of cavitation on the spray processes during gasoline direct injection. In: ICLASS 2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan (2015)Google Scholar
  13. 13.
    Bode, M., Deshmukh, A., Kirsch, V., Reddemann, M.A., Kneer, R., Pitsch, H.: Direct numerical simulations of novel biofuels for predicting spray characteristics. In: ICLASS 2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan (2015)Google Scholar
  14. 14.
    Bode, M., Göbbert, J.H., Pitsch, H.: Novel multiphase simulations investigating cavitation by use of in-situ visualization and Euler/Lagrange coupling. In: PRACEdays15, Dublin (2015)Google Scholar
  15. 15.
    Bode, M., Göbbert, J.H., Pitsch, H.: High-fidelity multiphase simulations and in-situ visualization using CIAO. In: NIC Symposium, Jülich (2016)Google Scholar
  16. 16.
    LLNL: VisIT Visualization Tool: Release Notes for VisIt 2.10.2 (2016).
  17. 17.
    Jülich Supercomputing Centre. JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre. Journal of large-scale research facilities, 1, A1 (2016).
  18. 18.
    High-Q Club. Accessed 01 April 2016
  19. 19.
    Falgout, R.D., Jones, J.E., Yang, U.M.: Pursuing scalability for hypre’s conceptual interfaces. ACM Trans. Math. Softw. (TOMS) 31(3), 326–350 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2016, Technical Report FZJ-JSC-IB-2016-01, Jülich Supercomputing Center (2016)Google Scholar
  21. 21.
    Geimer, G., et al.: The Scalasca performance toolset architecture. Concurrency Comput. Pract. Experience 22(6), 702–719 (2010). Google Scholar
  22. 22.
    Knüpfer, K., et al.: Score-P: a joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp. 79–91. Springer, Heidelberg (2012). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jens Henrik Göbbert
    • 1
    Email author
  • Mathis Bode
    • 2
  • Brian J. N. Wylie
    • 1
  1. 1.Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
  2. 2.Institute for Combustion TechnologyRWTH Aachen UniversityAachenGermany

Personalised recommendations