Skip to main content

Choosing Metrics Appropriate for Different Stages of Drug Development

  • Chapter
  • First Online:
Book cover Quantitative Decisions in Drug Development

Part of the book series: Springer Series in Pharmaceutical Statistics ((SSPS))

  • 1177 Accesses

Abstract

In this chapter, we give an overview of metrics that are useful to evaluate designs for determining if a new drug is efficacious at each of the three premarketing clinical development stages. The three stages are to determine if the new drug exhibits a positive proof of concept, to explore a possible dose-response relationship, and to confirm a hypothesized drug effect. The focus on efficacy is due to the generally well-defined endpoints to decide the beneficial effect of a new drug. Nevertheless, the approach is equally applicable to safety endpoints if there are specific safety endpoints that can be used to anchor design considerations and decision rules. Deliberations of the metrics for each stage will be further elaborated in Chaps. 79 respectively.

Without a standard there is no logical basis for making a decision or taking action.

Joseph M. Juran

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee, A., & Christensen, J. (2015). Bayesian dose response. In S. M. Menon & R. C. Zink (Eds.), Modern approaches to clinical trials using SAS ® : Classical, adaptive, and Bayesian methods (pp. 225–246). Cary, NC: SAS Press.

    Google Scholar 

  • Bornkamp, B., Bretz, F., Dmitrienko, A., et al. (2007). Innovative approaches for designing and analyzing adaptive dose-ranging trials. Journal of Biopharmaceutical Statistics, 17(6), 965–995.

    Article  MathSciNet  Google Scholar 

  • Bornkamp, B., Pinheiro, J., & Bretz, F. (2009). MCPMod: An R package for the design and analysis of dose-finding studies. Journal of Statistical Software, 29(7), 1–23.

    Article  Google Scholar 

  • Brain, P., Kirby, S., & Larionov, R. (2014). Fitting Emax models to clinical trial dose-response data when the high dose asymptote is ill defined. Pharmaceutical Statistics, 13(6), 364–370.

    Article  Google Scholar 

  • Bretz, F., Pinheiro, J., & Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics, 61(3), 738–748.

    Article  MathSciNet  MATH  Google Scholar 

  • Burman, C. F., Grieve, A. P., & Senn, S. (2007). Decision analysis in drug development. In A. Dmitrienko, C. Chuang-Stein, & R. D’Agostino (Eds.), Pharmaceutical statistics using SAS ® : A practical guide (pp. 385–428). Cary, NC: SAS Institute.

    Google Scholar 

  • Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096–1121.

    Article  MATH  Google Scholar 

  • FierceBiotech Report. (2010). The top 10 phase III failures of 2010. Accessed January 19, 2016, from http://www.fiercebiotech.com/special-reports/top-10-phase-iii-failures-2010#ixzz13Nwfm52q

  • Green, R. C., Schneider, L. S., Amato, D. A., et al. (2009). Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. Journal of the American Medical Association, 302(23), 2557–2564.

    Article  Google Scholar 

  • Jones, B., Layton, G., Richardson, H., & Thomas, N. (2011). Model-based Bayesian adaptive dose finding designs for a phase II trial. Statistics in Biopharmaceutical Research, 3(2), 276–287.

    Article  Google Scholar 

  • MacDougall, J. (2006). Analysis of dose-response studies-Emax model. In N. Ting (Ed.), Dose-finding in drug development. New York: Springer.

    Google Scholar 

  • Patel, N., Bolognese, J., Chuang-Stein, C., et al. (2012). Designing phase 2 trials based on program-level considerations: A case study for neuropathic pain. Drug Information Journal, 46(4), 439–454.

    Google Scholar 

  • Pinheiro, J., Sax, F., Antonijevic, Z., et al. (2010). Adaptive and model-based dose-ranging trials: Quantitative evaluation and recommendations. Statistics in Biopharmaceutical Research, 2(4), 435–454.

    Article  Google Scholar 

  • Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order restricted statistical inference. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Ruberg, S. J. (1995a). Dose-response studies I: Some design considerations. Journal of Biopharmaceutical Statistics, 5(1), 1–14.

    Article  MathSciNet  Google Scholar 

  • Ruberg, S. J. (1995b). Dose-response studies II: Analysis and interpretation. Journal of Biopharmaceutical Statistics, 5(1), 15–42.

    Article  MathSciNet  Google Scholar 

  • Seber, G. A. F., & Wild, C. J. (2003). Nonlinear regression. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Tan, H., Gruben, D., French, J., & Thomas, N. (2011). A case study of model-based Bayesian dose response estimation. Statistics in Medicine, 30(21), 2622–2633.

    MathSciNet  Google Scholar 

  • Thomas, N. (2006). Hypothesis testing and Bayesian estimation using a sigmoid Emax model applied to sparse dose-response designs. Journal of Biopharmaceutical Statistics, 16(5), 657–677.

    Article  MathSciNet  Google Scholar 

  • Thomas, N., Roy, D., Somayaji, V., & Sweeney, K. (2014a). Meta-analyses of clinical dose response. Presentation at the European Medicines Agency/European Federation of Pharmaceutical Industries and Associations workshop on the importance of dose finding and dose selection for the successful development, licensing and lifecycle management of medicinal products. Accessed January 3, 2016, from http://www.ema.europa.eu/docs/en_GB/document_library/Presentation/2015/01/WC500179795.pdf

  • Thomas, N., Sweeney, K., & Somayaji, V. (2014b). Meta-analysis of clinical dose–response in a large drug development portfolio. Statistics in Biopharmaceutical Research, 6(4), 302–317.

    Article  Google Scholar 

  • Wang, M., Liu, G. F., & Schindler, J. (2015). Evaluation of program success for programs with multiple trials in binary outcomes. Pharmaceutical Statistics, 14(3), 172–179.

    Article  Google Scholar 

  • Wilcock, G. K., Black, S. E., Hendrix, S. B. et al., Tarenflurbil Phase II Study Investigators. (2008). Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomized phase II trial. Lancet Neurology, 7(6), 483–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chuang-Stein, C., Kirby, S. (2017). Choosing Metrics Appropriate for Different Stages of Drug Development. In: Quantitative Decisions in Drug Development. Springer Series in Pharmaceutical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-46076-5_6

Download citation

Publish with us

Policies and ethics