Skip to main content

Image-Based Identification of Plant Species Using a Model-Free Approach and Active Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9904))

Abstract

Collection and maintenance of biodiversity data is in need for automation. We present first results of an automated and model-free approach to the species identification from herbarium specimens kept in herbaria worldwide. Methodologically, our approach relies on standard methods for the detection and description of so-called interest points and their classification into species-characteristic categories using standard supervised learning tools. To keep the approach model-free on the one hand but also offer opportunities for species identification even in very challenging cases on the other hand, we allow to induce specific knowledge about important visual cues by using concepts of active learning on demand. First encouraging results on selected fern species show recognition accuracies between 94 % and 100 %.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Matteo Spampani Alessio Anzivino: Hog-processing. http://hogprocessing.altervista.org. Accessed 15 Mar 2016

  2. Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. Int. J. Pattern Recogn. Artif. Intell. 23(06), 1145–1160 (2009)

    Article  Google Scholar 

  3. Belhumeur, P.N., et al.: Searching the world’s Herbaria: a system for visual identification of plant species. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 116–129. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  5. Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., Picard, M.: The imageclef 2011 plant images classi cation task. In: ImageCLEF 2011 (2011)

    Google Scholar 

  6. Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.-F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 813–814. ACM (2011)

    Google Scholar 

  7. Joachims, T.: Making large scale svm learning practical. Technical report, Universität Dortmund (1999)

    Google Scholar 

  8. Joachims, T.: Svmlight (2008). http://svmlight.joachims.org/. Accessed 14 Nov 2015

  9. Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Leaf classification using shape, color, and texture features (2013). arXiv preprint arXiv:1401.4447

  10. David, G.: Lowe: distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  11. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  12. Muséum national d’Histoire naturelle, Paris (France). Collection: Vascular plants (P). Specimens

    Google Scholar 

  13. Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Sixth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008, pp. 722–729. IEEE (2008)

    Google Scholar 

  14. O’Dell, W.: Imagej plugins: Template-matching. http://rsb.info.nih.gov/ij/plugins/template-matching.html. Accessed 15 Mar 2016

  15. Rasband, W.S.: Imagej. U. S. National Institutes of Health, Bethesda, Maryland, USA (2015). http://imagej.nih.gov/ij/. Accessed 14 Nov 2015

  16. Saalfeld, S.: Javasift (2015). https://github.com/axtimwalde/mpicbg. Accessed 14 Nov 2015

  17. Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2010)

    Google Scholar 

  18. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)

    MATH  Google Scholar 

  19. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatan Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Grimm, J., Hoffmann, M., Stöver, B., Müller, K., Steinhage, V. (2016). Image-Based Identification of Plant Species Using a Model-Free Approach and Active Learning. In: Friedrich, G., Helmert, M., Wotawa, F. (eds) KI 2016: Advances in Artificial Intelligence. KI 2016. Lecture Notes in Computer Science(), vol 9904. Springer, Cham. https://doi.org/10.1007/978-3-319-46073-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46073-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46072-7

  • Online ISBN: 978-3-319-46073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics