Skip to main content

Fully Dynamic de Bruijn Graphs

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9954))

Included in the following conference series:

Abstract

We present a space- and time-efficient fully dynamic implementation of de Bruijn graphs, which can also support fixed-length jumbled pattern matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative definition, which our data structure can be made to handle but which we do not consider in this paper, has an edge from u to v whenever both nodes are in the graph.

References

  1. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014)

    Google Scholar 

  2. Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)

    Article  MathSciNet  Google Scholar 

  3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing: searching a sorted table with o(1) accesses. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 785–794. Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  4. Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M.: Fully dynamic de bruijn graphs. arXiv preprint (2016). arXiv:1607.04909

  5. Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M., Puglisi, S.J.: Bidirectional variable-order de Bruijn graphs. In: Kranakis, E., et al. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 164–178. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49529-2_13

    Chapter  Google Scholar 

  6. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de Bruijn graphs. In: Data Compression Conference (DCC), pp. 383–392. IEEE (2015)

    Google Scholar 

  7. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci. 23(02), 357–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithm Mol. Biol. 8(22), 1–9 (2012)

    MathSciNet  Google Scholar 

  10. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on trees and tree-like structures. Algorithmica 73(3), 571–588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Mehlhorn, K.: On the program size of perfect and universal hash functions. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS’08, pp. 170–175. IEEE (1982)

    Google Scholar 

  14. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve the memory usage for de Brujin graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Salmela, L., Rivals, E.: Lordec: accurate and efficient long read error correction. Bioinformatics 30(24), 3506–3514 (2014). http://dx.doi.org/10.1093/bioinformatics/btu538

    Article  Google Scholar 

  16. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11(2), 375–388 (2014)

    Article  Google Scholar 

  17. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Rayan Chikhi and the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Gagie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M. (2016). Fully Dynamic de Bruijn Graphs. In: Inenaga, S., Sadakane, K., Sakai, T. (eds) String Processing and Information Retrieval. SPIRE 2016. Lecture Notes in Computer Science(), vol 9954. Springer, Cham. https://doi.org/10.1007/978-3-319-46049-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46049-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46048-2

  • Online ISBN: 978-3-319-46049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics