Skip to main content

Activation Mechanism and Allosteric Properties of the GABAB Receptor

  • Chapter
  • First Online:
GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

The GABAB receptor is quite original within the large G protein-coupled receptor (GPCR) family. When first identified at the molecular level, it was the only GPCR to require two subunits to form a functional receptor, composed of GABAB1 and GABAB2. Although part of the mandatory dimeric class C group of GPCRs that also includes the receptors activated by glutamate, calcium, the sweet and umami taste compounds, the GABAB is unique in that it lacks an essential element, the cysteine-rich domain that interconnects the ligand binding domain to the heptahelical transmembrane domain (7TM) responsible for G protein activation. Here, we will summarize our actual knowledge on the structure, stoichiometry, allosteric properties, and activation mechanism. These reveal some similarities and major differences with the other class C GPCRs and highlight novel possibilities to develop approaches to regulate its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Binet, V., Brajon, C., Le Corre, L., Acher, F., Pin, J. P., & Prezeau, L. (2004). The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. Journal of Biological Chemistry, 279(28), 29085–29091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binet, V., Duthey, B., Lecaillon, J., Vol, C., Quoyer, J., Labesse, G., et al. (2007). Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. Journal of Biological Chemistry, 282(16), 12154–12163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blein, S., Ginham, R., Uhrin, D., Smith, B. O., Soares, D. C., Veltel, S., et al. (2004). Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: Only one of the two CCP modules is compactly folded. Journal of Biological Chemistry, 279(46), 48292–48306.

    Article  CAS  PubMed  Google Scholar 

  • Bonanno, G., Fassio, A., Schmid, G., Severi, P., Sala, R., & Raiteri, M. (1997). Pharmacologically distinct GABAB receptors that mediate inhibition of GABA and glutamate release in human neocortex. British Journal of Pharmacology, 120(1), 60–64.

    Article  CAS  PubMed  Google Scholar 

  • Burmakina, S., Geng, Y., Chen, Y., & Fan, Q. R. (2014). Heterodimeric coiled-coil interactions of human GABAB receptor. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 6958–6963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calebiro, D., Rieken, F., Wagner, J., Sungkaworn, T., Zabel, U., Borzi, A., et al. (2013). Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 743–748.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L. H., Sun, B., Zhang, Y., Xu, T. J., Xia, Z. X., Liu, J. F., et al. (2014). Discovery of a negative allosteric modulator of GABAB receptors. ACS Medicinal Chemistry Letters, 5(7), 742–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comps-Agrar, L., Kniazeff, J., Brock, C., Trinquet, E., & Pin, J. P. (2011). The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO Journal, 30(12), 2336–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comps-Agrar, L., Kniazeff, J., Norskov-Lauritsen, L., Maurel, D., Gassmann, M., Gregor, N., et al. (2012). Stability of GABAB receptor oligomers revealed by dual TR-FRET and drug-induced cell surface targeting. FASEB Journal, 26(8), 3430–3439.

    Article  CAS  PubMed  Google Scholar 

  • Deisz, R. A., Billard, J. M., & Zieglgansberger, W. (1997). Presynaptic and postsynaptic GABAB receptors of neocortical neurons of the rat in vitro: Differences in pharmacology and ionic mechanisms. Synapse, 25(1), 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Dore, A. S., Okrasa, K., Patel, J. C., Serrano-Vega, M., Bennett, K., Cooke, R. M., et al. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511(7511), 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Duthey, B., Caudron, S., Perroy, J., Bettler, B., Fagni, L., Pin, J. P., et al. (2002). A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. Journal of Biological Chemistry, 277(5), 3236–3241.

    Article  CAS  PubMed  Google Scholar 

  • Galvez, T., Parmentier, M. L., Joly, C., Malitschek, B., Kaupmann, K., Kuhn, R., et al. (1999). Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. Journal of Biological Chemistry, 274(19), 13362–13369.

    Article  CAS  PubMed  Google Scholar 

  • Galvez, T., Prezeau, L., Milioti, G., Franek, M., Joly, C., Froestl, W., et al. (2000). Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. Journal of Biological Chemistry, 275(52), 41166–41174.

    Article  CAS  PubMed  Google Scholar 

  • Galvez, T., Duthey, B., Kniazeff, J., Blahos, J., Rovelli, G., Bettler, B., et al. (2001). Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO Journal, 20(9), 2152–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, Y., Xiong, D., Mosyak, L., Malito, D. L., Kniazeff, J., Chen, Y., et al. (2012). Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Nature Neuroscience, 15(7), 970–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, Y., Bush, M., Mosyak, L., Wang, F., & Fan, Q. R. (2013). Structural mechanism of ligand activation in human GABA(B) receptor. Nature, 504(7479), 254–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havlickova, M., Prezeau, L., Duthey, B., Bettler, B., Pin, J. P., & Blahos, J. (2002). The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Molecular Pharmacology, 62(2), 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Cao, J., Jiang, M., Labesse, G., Liu, J., Pin, J. P., et al. (2011). Interdomain movements in metabotropic glutamate receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15480–15485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396(6712), 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Kammerer, R. A., Frank, S., Schulthess, T., Landwehr, R., Lustig, A., & Engel, J. (1999). Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry, 38(40), 13263–13269.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., et al. (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature, 386(6622), 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., et al. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396(6712), 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Kniazeff, J., Galvez, T., Labesse, G., & Pin, J. P. (2002). No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. Journal of Neuroscience, 22(17), 7352–7361.

    CAS  PubMed  Google Scholar 

  • Kniazeff, J., Saintot, P. P., Goudet, C., Liu, J., Charnet, A., Guillon, G., et al. (2004). Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. Journal of Neuroscience, 24(2), 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Kniazeff, J., Prezeau, L., Rondard, P., Pin, J. P., & Goudet, C. (2011). Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacology & Therapeutics, 130(1), 9–25.

    Article  CAS  Google Scholar 

  • Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., et al. (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407(6807), 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Maurel, D., Etzol, S., Brabet, I., Ansanay, H., Pin, J. P., et al. (2004). Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. Journal of Biological Chemistry, 279(16), 15824–15830.

    Article  CAS  PubMed  Google Scholar 

  • Malherbe, P., Masciadri, R., Norcross, R. D., Knoflach, F., Kratzeisen, C., Zenner, M. T., et al. (2008). Characterization of (R, S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one as a positive allosteric modulator of GABAB receptors. British Journal of Pharmacology, 154(4), 797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2000). A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron, 27(1), 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2001a). Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14643–14648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2001b). Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14649–14654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason, J. M., & Arndt, K. M. (2004). Coiled coil domains: Stability, specificity, and biological implications. Chembiochem, 5(2), 170–176.

    Article  CAS  PubMed  Google Scholar 

  • Maurel, D., Comps-Agrar, L., Brock, C., Rives, M. L., Bourrier, E., Ayoub, M. A., et al. (2008). Cell-surface proteinprotein interaction analysis with time-resolved FRET and snap-tag technologies: Application to GPCR oligomerization. Nature Methods, 5(6), 561–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnier, C., Tu, H., Bourrier, E., Vol, C., Lamarque, L., Trinquet, E., et al. (2011). Trans-activation between 7TM domains: Implication in heterodimeric GABAB receptor activation. EMBO Journal, 30(1), 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Muto, T., Tsuchiya, D., Morikawa, K., & Jingami, H. (2007). Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3759–3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara, P. J., Sheppard, P. O., Thogersen, H., Venezia, D., Haldeman, B. A., McGrane, V., et al. (1993). The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron, 11(1), 41–52.

    Article  PubMed  Google Scholar 

  • Okamoto, T., Sekiyama, N., Otsu, M., Shimada, Y., Sato, A., Nakanishi, S., et al. (1998). Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. Journal of Biological Chemistry, 273(21), 13089–13096.

    Article  CAS  PubMed  Google Scholar 

  • Pagano, A., Rovelli, G., Mosbacher, J., Lohmann, T., Duthey, B., Stauffer, D., et al. (2001). C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. Journal of Neuroscience, 21(4), 1189–1202.

    CAS  PubMed  Google Scholar 

  • Patowary, S., Alvarez-Curto, E., Xu, T. R., Holz, J. D., Oliver, J. A., Milligan, G., et al. (2013). The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochemical Journal, 452(2), 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Pisterzi, L. F., Jansma, D. B., Georgiou, J., Woodside, M. J., Chou, J. T., Angers, S., et al. (2010). Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. Journal of Biological Chemistry, 285(22), 16723–16738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid, K. B., & Day, A. J. (1989). Structure-function relationships of the complement components. Immunology Today, 10(6), 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., et al. (2001). GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. Journal of Neuroscience, 21(20), 8043–8052.

    CAS  PubMed  Google Scholar 

  • Rondard, P., Huang, S., Monnier, C., Tu, H., Blanchard, B., Oueslati, N., et al. (2008). Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO Journal, 27(9), 1321–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rondard, P., Goudet, C., Kniazeff, J., Pin, J. P., & Prezeau, L. (2011). The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology, 60(1), 82–92.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., et al. (2010). Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature, 465(7295), 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Sobolevsky, A. I., Rosconi, M. P., & Gouaux, E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462(7274), 745–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiger, J. L., Bandyopadhyay, S., Farb, D. H., & Russek, S. J. (2004). cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. Journal of Neuroscience, 24(27), 6115–6126.

    Article  CAS  PubMed  Google Scholar 

  • Tiao, J. Y., Bradaia, A., Biermann, B., Kaupmann, K., Metz, M., Haller, C., et al. (2008). The sushi domains of secreted GABA(B1) isoforms selectively impair GABA(B) heteroreceptor function. Journal of Biological Chemistry, 283(45), 31005–31011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H., & Morikawa, K. (2002). Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2660–2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urwyler, S., Mosbacher, J., Lingenhoehl, K., Heid, J., Hofstetter, K., Froestl, W., et al. (2001). Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Molecular Pharmacology, 60(5), 963–971.

    CAS  PubMed  Google Scholar 

  • Urwyler, S., Pozza, M. F., Lingenhoehl, K., Mosbacher, J., Lampert, C., Froestl, W., et al. (2003). N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: Novel allosteric enhancers of gamma-aminobutyric acid B receptor function. Journal of Pharmacology and Experimental Therapeutics, 307(1), 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Vigot, R., Barbieri, S., Brauner-Osborne, H., Turecek, R., Shigemoto, R., Zhang, Y. P., et al. (2006). Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron, 50(4), 589–601.

    Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., et al. (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature, 396(6712), 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, L., Rovira, X., Scholler, P., Zhao, H., Liu, J., Pin, J. P., et al. (2015). Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nature Chemical Biology, 11(2), 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Shen, W., & Slaughter, M. M. (1997). Two metabotropic gamma-aminobutyric acid receptors differentially modulate calcium currents in retinal ganglion cells. Journal of General Physiology, 110(1), 45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Pin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kniazeff, J., Rovira, X., Rondard, P., Pin, JP. (2016). Activation Mechanism and Allosteric Properties of the GABAB Receptor. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_6

Download citation

Publish with us

Policies and ethics