Skip to main content

Targeting the GABAB Receptor for the Treatment of Pain

  • Chapter
  • First Online:
GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

Pharmacological and neurobiological data indicate that γ-aminobutyric acid (GABA) is involved in pain processing and perception, with both basic and clinical studies demonstrating that selective activation of GABAergic transmission yields a nociceptive response. This is particularly true for agents that stimulate GABAB receptors. While these findings are in accord with the neuroanatomical localization of GABAB receptors on nociceptive pathways, such work has yet to yield a clinically useful analgesic. Some reasons for this failure are the side effects associated with GABAB agonists and the tolerance that develops to their therapeutic effects. Described in this chapter are the neuroanatomical localization and function of GABAergic neurons as they relate to nociception and to the antinociceptive responses to GABAB receptor agonists. Particular emphasis is placed on detailing possible reasons why GABAergic compounds, especially orthosteric receptor agonists, display limited clinical efficacy as analgesics. Among these are the variations in GABA receptor expression and function that occur with the persistent receptor activation associated with a painful stimulus and the chronic administration of orthosteric compounds. Strategies are described for developing GABAergic drugs, such as allosteric GABAB receptor modulators, that by selectively activating sites associated with pain pathways provoke fewer side effects and less tolerance than orthosteric agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andreou, A. P., Shields, K. G., & Goadsby, P. J. (2010). GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiology of Disease, 37(2), 314–323. doi:10.1016/j.nbd.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  • Bai, H. P., Liu, P., Wu, Y. M., Guo, W. Y., Guo, Y. X., & Wang, X. L. (2014). Activation of spinal GABAB receptors normalizes N-methyl-D-aspartate receptor in diabetic neuropathy. Journal of the Neurological Sciences, 341(1–2), 68–72. doi:10.1016/j.jns.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Baloucoune, G. A., Chun, L., Zhang, W., Xu, C., Huang, S., Sun, Q., et al. (2012). GABAB receptor subunit GB1 at the cell surface independently activates ERK1/2 through IGF-1R transactivation. PLoS One, 7(6), e39698. doi:10.1371/journal.pone.0039698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr, M. S., Farzan, F., Davis, K. D., Fitzgerald, P. B., & Daskalakis, Z. J. (2013). Measuring GABAergic inhibitory activity with TMS-EEG and its potential clinical application for chronic pain. Journal of Neuroimmune Pharmacology, 8(3), 535–546. doi:10.1007/s11481-012-9383-y.

    Article  PubMed  Google Scholar 

  • Benke, D. (2013). GABAB receptor trafficking and interacting proteins: Targets for the development of highly specific therapeutic strategies to treat neurological disorders? Biochemical Pharmacology, 86(11), 1525–1530. doi:10.1016/j.bcp.2013.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Berecki, G., McArthur, J. R., Cuny, H., Clark, R. J., & Adams, D. J. (2014). Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and alpha-conotoxin Vc1.1 via GABAB receptor activation. The Journal of General Physiology, 143(4), 465–479. doi:10.1085/jgp.201311104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery, N. G., & Enna, S. J. (2000). Gamma-aminobutyric acid(B) receptors: First of the functional metabotropic heterodimers. The Journal of Pharmacology and Experimental Therapeutics, 292(1), 2–7.

    CAS  PubMed  Google Scholar 

  • Brenowitz, S., David, J., & Trussell, L. (1998). Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Neuron, 20(1), 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Brusberg, M., Ravnefjord, A., Martinsson, R., Larsson, H., Martinez, V., & Lindstrom, E. (2009). The GABA(B) receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats. Neuropharmacology, 56(2), 362–367. doi:10.1016/j.neuropharm.2008.09.006.

    Article  CAS  PubMed  Google Scholar 

  • Callaghan, B., Haythornthwaite, A., Berecki, G., Clark, R. J., Craik, D. J., & Adams, D. J. (2008). Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. The Journal of Neuroscience, 28(43), 10943–10951. doi:10.1523/jneurosci.3594-08.2008.

    Article  CAS  PubMed  Google Scholar 

  • Carai, M. A., Colombo, G., Froestl, W., & Gessa, G. L. (2004a). In vivo effectiveness of CGP7930, a positive allosteric modulator of the GABAB receptor. European Journal of Pharmacology, 504(3), 213–216. doi:10.1016/j.ejphar.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Carai, M. A., Vacca, G., Serra, S., Colombo, G., Froestl, W., & Gessa, G. L. (2004b). Suppression of GABA(B) receptor function in vivo by disulfide reducing agent, DL-dithiothreitol (DTT). Psychopharmacology, 174(2), 283–290. doi:10.1007/s00213-003-1737-y.

    Article  CAS  PubMed  Google Scholar 

  • Carlton, S. M., Zhou, S., & Coggeshall, R. E. (1999). Peripheral GABA(A) receptors: Evidence for peripheral primary afferent depolarization. Neuroscience, 93(2), 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Castelli, M. P., Casu, A., Casti, P., Lobina, C., Carai, M. A., Colombo, G., et al. (2012). Characterization of COR627 and COR628, two novel positive allosteric modulators of the GABAB receptor. The Journal of Pharmacology and Experimental Therapeutics, 340(3), 529–538. doi:10.1124/jpet.111.186460.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. R., & Pan, H. L. (2003). Spinal GABAB receptors mediate antinociceptive actions of cholinergic agents in normal and diabetic rats. Brain Research, 965(1–2), 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Chronwall, B. M., Davis, T. D., Severidt, M. W., Wolfe, S. E., McCarson, K. E., Beatty, D. M., et al. (2001). Constitutive expression of functional GABA(B) receptors in mIL-tsA58 cells requires both GABA(B(1)) and GABA(B(2)) genes. Journal of Neurochemistry, 77(5), 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  • Crosby, N. D., Weisshaar, C. L., Smith, J. R., Zeeman, M. E., Goodman-Keiser, M. D., & Winkelstein, B. A. (2015). Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Transactions on Bio-medical Engineering, 62(6), 1604–1613. doi:10.1109/tbme.2015.2399374.

    Article  PubMed  Google Scholar 

  • Cui, J. G., Linderoth, B., & Meyerson, B. A. (1996). Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. Pain, 66(2–3), 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Cuny, H., de Faoite, A., Huynh, T. G., Yasuda, T., Berecki, G., & Adams, D. J. (2012). gamma-Aminobutyric acid type B (GABAB) receptor expression is needed for inhibition of N-type (Cav2.2) calcium channels by analgesic alpha-conotoxins. The Journal of Biological Chemistry, 287(28), 23948–23957. doi:10.1074/jbc.M112.342998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney, A. J., & Crane, J. W. (2016). Presynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels. Scientific Reports, 6, 19255. doi:10.1038/srep19255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derjean, D., Bertrand, S., Le Masson, G., Landry, M., Morisset, V., & Nagy, F. (2003). Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nature Neuroscience, 6(3), 274–281. doi:10.1038/nn1016.

    Article  CAS  PubMed  Google Scholar 

  • Desarmenien, M., Feltz, P., Occhipinti, G., Santangelo, F., & Schlichter, R. (1984). Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. British Journal of Pharmacology, 81(2), 327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deseure, K., Koek, W., Adriaensen, H., & Colpaert, F. C. (2003). Continuous administration of the 5-hydroxytryptamine1A agonist (3-Chloro-4-fluoro-phenyl)-[4-fluoro-4-[[(5-methyl-pyridin-2-ylmethyl)-amino]-methyl]piperidin-1-yl]-methadone (F 13640) attenuates allodynia-like behavior in a rat model of trigeminal neuropathic pain. The Journal of Pharmacology and Experimental Therapeutics, 306(2), 505–514. doi:10.1124/jpet.103.050286.

    Article  CAS  PubMed  Google Scholar 

  • Dirig, D. M., & Yaksh, T. L. (1995). Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. The Journal of Pharmacology and Experimental Therapeutics, 275(1), 219–227.

    CAS  PubMed  Google Scholar 

  • Drew, G. M., Siddall, P. J., & Duggan, A. W. (2004). Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain, 109(3), 379–388. doi:10.1016/j.pain.2004.02.007.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, M. J., Martinez, M. A., & Karmally, S. (1999). A single intrathecal injection of GABA permanently reverses neuropathic pain after nerve injury. Brain Research, 835(2), 334–339.

    Article  CAS  PubMed  Google Scholar 

  • Enna, S. J. (2001a). A GABA(B) mystery: The search for pharmacologically distinct GABA(B) receptors. Molecular Interventions, 1(4), 208–218.

    CAS  PubMed  Google Scholar 

  • Enna, S. J. (2001b). GABAB receptor signaling pathways. In H. Mohler (Ed.), Pharmacology of GABA and glycine neurotransmission (pp. 329–342). Berlin: Springer.

    Chapter  Google Scholar 

  • Enna, S. J., Harstad, E. B., & McCarson, K. E. (1998). Regulation of neurokinin-1 receptor expression by GABA(B) receptor agonists. Life Sciences, 62(17–18), 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  • Enna, S. J., & McCarson, K. E. (2006). The role of GABA in the mediation and perception of pain. Advances in Pharmacology, 54, 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Franek, M., Vaculin, S., & Rokyta, R. (2004). GABA(B) receptor agonist baclofen has non-specific antinociceptive effect in the model of peripheral neuropathy in the rat. Physiological Research, 53(3), 351–355.

    CAS  PubMed  Google Scholar 

  • Frankowska, M., Filip, M., & Przegalinski, E. (2007). Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacological Reports, 59(6), 645–655.

    CAS  PubMed  Google Scholar 

  • Frau, R., Bini, V., Pillolla, G., Malherbe, P., Pardu, A., Thomas, A. W., et al. (2014). Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models. CNS Neuroscience & Therapeutics, 20(7), 679–684. doi:10.1111/cns.12261.

    Article  CAS  Google Scholar 

  • Fromm, G. H. (1994). Baclofen as an adjuvant analgesic. Journal of Pain and Symptom Management, 9(8), 500–509.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara, K., Katafuchi, T., & Yoshimura, M. (2013). Effects of baclofen on mechanical noxious and innocuous transmission in the spinal dorsal horn of the adult rat: In vivo patch-clamp analysis. The European Journal of Neuroscience, 38(10), 3398–3407. doi:10.1111/ejn.12345.

    Article  PubMed  Google Scholar 

  • Gaillard, S., Lo Re, L., Mantilleri, A., Hepp, R., Urien, L., Malapert, P., et al. (2014). GINIP, a Galphai-interacting protein, functions as a key modulator of peripheral GABAB receptor-mediated analgesia. Neuron, 84(1), 123–136. doi:10.1016/j.neuron.2014.08.056.

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan, V., Agarwal, N., Brugger, S., Tegeder, I., Bettler, B., Kuner, R., et al. (2009). Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo. Molecular Pain, 5, 68. doi:10.1186/1744-8069-5-68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gassmann, M., Shaban, H., Vigot, R., Sansig, G., Haller, C., Barbieri, S., et al. (2004). Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. The Journal of Neuroscience, 24(27), 6086–6097. doi:10.1523/JNEUROSCI.5635-03.2004.

    Article  CAS  PubMed  Google Scholar 

  • Gee, N. S., Brown, J. P., Dissanayake, V. U., Offord, J., Thurlow, R., & Woodruff, G. N. (1996). The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. The Journal of Biological Chemistry, 271(10), 5768–5776.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, A. K., & Franklin, K. B. (2001). GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain, 90(1–2), 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Gjoni, T., & Urwyler, S. (2008). Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABAB receptor desensitization. Neuropharmacology, 55(8), 1293–1299. doi:10.1016/j.neuropharm.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Green, G. M., & Dickenson, A. (1997). GABA-receptor control of the amplitude and duration of the neuronal responses to formalin in the rat spinal cord. European Journal of Pain, 1(2), 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Gwak, Y. S., Tan, H. Y., Nam, T. S., Paik, K. S., Hulsebosch, C. E., & Leem, J. W. (2006). Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. Journal of Neurotrauma, 23(7), 1111–1124. doi:10.1089/neu.2006.23.1111.

    Article  PubMed  Google Scholar 

  • Hammond, D. L., & Drower, E. J. (1984). Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. European Journal of Pharmacology, 103(1–2), 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Hanack, C., Moroni, M., Lima, W. C., Wende, H., Kirchner, M., Adelfinger, L., et al. (2015). GABA blocks pathological but not acute TRPV1 pain signals. Cell, 160(4), 759–770. doi:10.1016/j.cell.2015.01.022.

    Article  CAS  PubMed  Google Scholar 

  • Hensler, J. G., Advani, T., Burke, T. F., Cheng, K., Rice, K. C., & Koek, W. (2012). GABAB receptor-positive modulators: Brain region-dependent effects. The Journal of Pharmacology and Experimental Therapeutics, 340(1), 19–26. doi:10.1124/jpet.111.186577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsek, S. D., Seal, R. P., & Sandkuhler, J. (2015). Presynaptic inhibition of optogenetically identified VGluT3+ sensory fibres by opioids and baclofen. Pain, 156(2), 243–251. doi:10.1097/01.j.pain.0000460304.63948.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D., Huang, S., Peers, C., Du, X., Zhang, H., & Gamper, N. (2015). GABAB receptors inhibit low-voltage activated and high-voltage activated Ca(2+) channels in sensory neurons via distinct mechanisms. Biochemical and Biophysical Research Communications, 465(2), 188–193. doi:10.1016/j.bbrc.2015.07.137.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. H., Hwang, K. S., Kim, J. U., Choi, I. C., Park, P. H., & Han, S. M. (2001). The interaction between intrathecal neostigmine and GABA receptor agonists in rats with nerve ligation Injury. Anesthesia and Analgesia, 93(5), 1297–1303.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. H., & Yaksh, T. L. (1997). The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain, 70(1), 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Hyland, N. P., & Golubeva, A. V. (2015). GABA receptors in the bladder and bowel: Therapeutic potential for positive allosteric modulators? British Journal of Pharmacology, 171, 995–1006. doi:10.1111/bph.12617.

    Google Scholar 

  • Ibuki, T., Hama, A. T., Wang, X. T., Pappas, G. D., & Sagen, J. (1997). Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience, 76(3), 845–858.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, H., & Izumi, H. (2012). GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 302(6), R776–R784. doi:10.1152/ajpregu.00569.2011.

    Article  CAS  PubMed  Google Scholar 

  • Jasmin, L., Rabkin, S. D., Granato, A., Boudah, A., & Ohara, P. T. (2003). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 424(6946), 316–320. doi:10.1038/nature01808.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396(6712), 674–679. doi:10.1038/25348.

    Article  CAS  PubMed  Google Scholar 

  • Kalinichev, M., Palea, S., Haddouk, H., Royer-Urios, I., Guilloteau, V., Lluel, P., et al. (2014). ADX71441, a novel, potent and selective positive allosteric modulator of the GABA(B) receptor, shows efficacy in rodent models of overactive bladder. British Journal of Pharmacology, 171(4), 995–1006. doi:10.1111/bph.12517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantamneni, S., Gonzalez-Gonzalez, I. M., Luo, J., Cimarosti, H., Jacobs, S. C., Jaafari, N., et al. (2014). Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling. The Journal of Biological Chemistry, 289(10), 6681–6694. doi:10.1074/jbc.M113.487348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., et al. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396(6712), 683–687. doi:10.1038/25360.

    Article  CAS  PubMed  Google Scholar 

  • Kendall, D. A., Browner, M., & Enna, S. J. (1982). Comparison of the antinociceptive effect of gamma-aminobutyric acid (GABA) agonists: Evidence for a cholinergic involvement. The Journal of Pharmacology and Experimental Therapeutics, 220(3), 482–487.

    CAS  PubMed  Google Scholar 

  • Kim, W., Kim, S. K., & Min, B. I. (2013). Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. Evidence-Based Complementary and Alternative Medicine, 2013, 436913. doi:10.1155/2013/436913.

    PubMed  PubMed Central  Google Scholar 

  • Kirouac, G. J., Li, S., & Mabrouk, G. (2004). GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. The Journal of Comparative Neurology, 469(2), 170–184. doi:10.1002/cne.11005.

    Article  CAS  PubMed  Google Scholar 

  • Laffray, S., Bouali-Benazzouz, R., Papon, M. A., Favereaux, A., Jiang, Y., Holm, T., et al. (2012). Impairment of GABAB receptor dimer by endogenous 14-3-3zeta in chronic pain conditions. The EMBO Journal, 31(15), 3239–3251. doi:10.1038/emboj.2012.161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy, R. A., & Proudfit, H. K. (1977). The analgesic action of baclofen [beta-(4-chlorophenyl)-gamma-aminobutyric acid]. The Journal of Pharmacology and Experimental Therapeutics, 202(2), 437–445.

    CAS  PubMed  Google Scholar 

  • Li, D. P., Chen, S. R., Pan, Y. Z., Levey, A. I., & Pan, H. L. (2002). Role of presynaptic muscarinic and GABA(B) receptors in spinal glutamate release and cholinergic analgesia in rats. The Journal of Physiology, 543(Pt 3), 807–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Risbrough, V. B., Cates-Gatto, C., Kaczanowska, K., Finn, M. G., Roberts, A. J., et al. (2013). Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice. Neuropharmacology, 70, 156–167. doi:10.1016/j.neuropharm.2013.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Guo, W. Y., Zhao, X. N., Bai, H. P., Wang, Q., Wang, X. L., et al. (2014). Intrathecal baclofen, a GABAB receptor agonist, inhibits the expression of p-CREB and NR2B in the spinal dorsal horn in rats with diabetic neuropathic pain. Canadian Journal of Physiology and Pharmacology, 92(8), 655–660. doi:10.1139/cjpp-2013-0463.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Ren, Y., Li, G., Liu, Z. L., Liu, R., Tong, Y., et al. (2013). GABAB receptors resist acute desensitization in both postsynaptic and presynaptic compartments of periaqueductal gray neurons. Neuroscience Letters, 543, 146–151. doi:10.1016/j.neulet.2013.03.035.

    Article  CAS  PubMed  Google Scholar 

  • Loubser, P. G., & Akman, N. M. (1996). Effects of intrathecal baclofen on chronic spinal cord injury pain. Journal of Pain and Symptom Management, 12(4), 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Zheng, J., Xiong, L., Zimmermann, M., & Yang, J. (2008). Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat. The Journal of Physiology, 586(Pt 23), 5701–5715. doi:10.1113/jphysiol.2008.152348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnaghi, V., Ballabio, M., Camozzi, F., Colleoni, M., Consoli, A., Gassmann, M., et al. (2008). Altered peripheral myelination in mice lacking GABAB receptors. Molecular and Cellular Neurosciences, 37(3), 599–609. doi:10.1016/j.mcn.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi, M., & Zarrindast, M. R. (2002). Effect of intracerebroventricular injection of GABA receptor agents on morphine-induced antinociception in the formalin test. Journal of Psychopharmacology, 16(1), 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Malan, T. P., Mata, H. P., & Porreca, F. (2002). Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology, 96(5), 1161–1167.

    Article  CAS  PubMed  Google Scholar 

  • Malcangio, M., & Bowery, N. G. (1994). Spinal cord SP release and hyperalgesia in monoarthritic rats: Involvement of the GABAB receptor system. British Journal of Pharmacology, 113(4), 1561–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcangio, M., Libri, V., Teoh, H., Constanti, A., & Bowery, N. G. (1995). Chronic (-)baclofen or CGP 36742 alters GABAB receptor sensitivity in rat brain and spinal cord. Neuroreport, 6(2), 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Martins, I., Carvalho, P., de Vries, M. G., Teixeira-Pinto, A., Wilson, S. P., Westerink, B. H., et al. (2015). GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain, 156(8), 1555–1565. doi:10.1097/j.pain.0000000000000203.

    Article  CAS  PubMed  Google Scholar 

  • McCarson, K. E., & Enna, S. J. (1996). Relationship between GABAB receptor activation and neurokinin receptor expression in spinal cord. Pharmacology Research Communications, 8, 191–194.

    CAS  Google Scholar 

  • McCarson, K. E., & Enna, S. J. (1999). Nociceptive regulation of GABA(B) receptor gene expression in rat spinal cord. Neuropharmacology, 38(11), 1767–1773.

    Article  CAS  PubMed  Google Scholar 

  • McCarson, K. E., & Enna, S. J. (2014). GABA pharmacology: The search for analgesics. Neurochemical Research, 39(10), 1948–1963. doi:10.1007/s11064-014-1254-x.

    Article  CAS  PubMed  Google Scholar 

  • McCarson, K. E., Ralya, A., Reisman, S. A., & Enna, S. J. (2005). Amitriptyline prevents thermal hyperalgesia and modifications in rat spinal cord GABA(B) receptor expression and function in an animal model of neuropathic pain. Biochemical Pharmacology, 71(1–2), 196–202. doi:10.1016/j.bcp.2005.10.026.

    Article  CAS  PubMed  Google Scholar 

  • Meisner, J. G., Marsh, A. D., & Marsh, D. R. (2010). Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. Journal of Neurotrauma, 27(4), 729–737. doi:10.1089/neu.2009.1166.

    Article  PubMed  Google Scholar 

  • Melin, C., Jacquot, F., Dallel, R., & Artola, A. (2013). Segmental disinhibition suppresses C-fiber inputs to the rat superficial medullary dorsal horn via the activation of GABAB receptors. The European Journal of Neuroscience, 37(3), 417–428. doi:10.1111/ejn.12048.

    Article  PubMed  Google Scholar 

  • Miletic, G., Draganic, P., Pankratz, M. T., & Miletic, V. (2003). Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain, 105(1–2), 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Mohler, H. (2001). Functions of GABAA-receptor: Pharmacology and pathophysiology. In H. Mohler (Ed.), Pharmacology of GABA and glycine neurotransmission (pp. 101–116). Berlin: Springer.

    Chapter  Google Scholar 

  • Mohler, H. B. J., Benson, B., Luscher, B., Rudolph, U., & Fritschy, J. M. (1997). Diversity in structure, pharmacology, and regulation of GABAA receptors. In S. J. Enna & N. G. Bowery (Eds.), The GABA receptors (pp. 11–36). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Mohler, H., Fritschy, J. M., Crestani, F., Hensch, T., & Rudolph, U. (2004). Specific GABA(A) circuits in brain development and therapy. Biochemical Pharmacology, 68(8), 1685–1690. doi:10.1016/j.bcp.2004.07.025.

    Article  CAS  PubMed  Google Scholar 

  • Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H., & Woolf, C. J. (2002). Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. The Journal of Neuroscience, 22(15), 6724–6731.

    CAS  PubMed  Google Scholar 

  • Mugnaini, C., Pedani, V., Casu, A., Lobina, C., Casti, A., Maccioni, P., et al. (2013). Synthesis and pharmacological characterization of 2-(acylamino)thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. Journal of Medicinal Chemistry, 56(9), 3620–3635. doi:10.1021/jm400144w.

    Article  CAS  PubMed  Google Scholar 

  • Naderi, N., Shafaghi, B., Khodayar, M. J., & Zarindast, M. R. (2005). Interaction between gamma-aminobutyric acid GABAB and cannabinoid CB1 receptors in spinal pain pathways in rat. European Journal of Pharmacology, 514(2–3), 159–164. doi:10.1016/j.ejphar.2005.03.037.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. T., Matsumoto, K., & Watanabe, H. (1997). Involvement of supraspinal GABA-ergic systems in clonidine-induced antinociception in the tail-pinch test in mice. Life Sciences, 61(11), 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, P., Kowalinska-Kania, M., Nowak, D., Kostrzewa, R. M., & Malinowska-Borowska, J. (2013). Antinociceptive effects of H(3) (R-methylhistamine) and GABA(B) (baclofen)-receptor ligands in an orofacial model of pain in rats. Neurotoxicity Research, 24(2), 258–264. doi:10.1007/s12640-013-9385-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, S., Naeem, S., Kesingland, A., Froestl, W., Capogna, M., Urban, L., et al. (2001). The effects of GABA(B) agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain, 90(3), 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Pinard, A., Seddik, R., & Bettler, B. (2010). GABAB receptors: Physiological functions and mechanisms of diversity. Advances in Pharmacology, 58, 231–255. doi:10.1016/S1054-3589(10)58010-4.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, M., Lima, D., Castro-Lopes, J., & Tavares, I. (2003). Noxious-evoked c-fos expression in brainstem neurons immunoreactive for GABAB, mu-opioid and NK-1 receptors. The European Journal of Neuroscience, 17(7), 1393–1402.

    Article  PubMed  Google Scholar 

  • Polgar, E., Hughes, D. I., Riddell, J. S., Maxwell, D. J., Puskar, Z., & Todd, A. J. (2003). Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain, 104(1–2), 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Potes, C. S., Neto, F. L., & Castro-Lopes, J. M. (2006). Inhibition of pain behavior by GABA(B) receptors in the thalamic ventrobasal complex: Effect on normal rats subjected to the formalin test of nociception. Brain Research, 1115(1), 37–47. doi:10.1016/j.brainres.2006.07.089.

    Article  CAS  PubMed  Google Scholar 

  • Price, G. W., Wilkin, G. P., Turnbull, M. J., & Bowery, N. G. (1984). Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature, 307(5946), 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Reis, G. M., & Duarte, I. D. (2006). Baclofen, an agonist at peripheral GABAB receptors, induces antinociception via activation of TEA-sensitive potassium channels. British Journal of Pharmacology, 149(6), 733–739. doi:10.1038/sj.bjp.0706898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley, R. C., Trafton, J. A., Chi, S. I., & Basbaum, A. I. (2001). Presynaptic regulation of spinal cord tachykinin signaling via GABA(B) but not GABA(A) receptor activation. Neuroscience, 103(3), 725–737.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, U., & Mohler, H. (2004). Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annual Review of Pharmacology and Toxicology, 44, 475–498. doi:10.1146/annurev.pharmtox.44.101802.121429.

    Article  CAS  PubMed  Google Scholar 

  • Sands, S. A., McCarson, K. E., & Enna, S. J. (2003). Differential regulation of GABA B receptor subunit expression and function. The Journal of Pharmacology and Experimental Therapeutics, 305(1), 191–196. doi:10.1124/jpet.102.046342.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, V., Luscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., et al. (2001). Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron, 31(1), 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., et al. (2010). Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature, 465(7295), 231–235. doi:10.1038/nature08964.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J., Perez-Garci, E., Schneider, A., Kollewe, A., Gauthier-Kemper, A., Fritzius, T., et al. (2016). Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nature Neuroscience, 19(2), 233–242. doi:10.1038/nn.4198.

    Article  CAS  PubMed  Google Scholar 

  • Shafizadeh, M., Semnanian, S., Zarrindast, M. R., & Hashemi, B. (1997). Involvement of GABAB receptors in the antinociception induced by baclofen in the formalin test. General Pharmacology, 28(4), 611–615.

    Article  CAS  PubMed  Google Scholar 

  • Sindrup, S. H., & Jensen, T. S. (2002). Pharmacotherapy of trigeminal neuralgia. The Clinical Journal of Pain, 18(1), 22–27.

    Article  PubMed  Google Scholar 

  • Slattery, D. A., Markou, A., Froestl, W., & Cryan, J. F. (2005). The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: Intracranial self-stimulation studies in the rat. Neuropsychopharmacology, 30(11), 2065–2072. doi:10.1038/sj.npp.1300734.

    Article  CAS  PubMed  Google Scholar 

  • Slonimski, M., Abram, S. E., & Zuniga, R. E. (2004). Intrathecal baclofen in pain management. Regional Anesthesia and Pain Medicine, 29(3), 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. D., Harrison, S. M., Birch, P. J., Elliott, P. J., Malcangio, M., & Bowery, N. G. (1994). Increased sensitivity to the antinociceptive activity of (+/-)-baclofen in an animal model of chronic neuropathic, but not chronic inflammatory hyperalgesia. Neuropharmacology, 33(9), 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  • Somers, D. L., & Clemente, F. R. (2002). Dorsal horn synaptosomal content of aspartate, glutamate, glycine and GABA are differentially altered following chronic constriction injury to the rat sciatic nerve. Neuroscience Letters, 323(3), 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, M., Ikeda, M., Takahashi, M., Kanazawa, T., Nasu, M., & Matsumoto, S. (2013). Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor. Brain Research Bulletin, 98, 155–162. doi:10.1016/j.brainresbull.2013.08.005.

    Article  CAS  PubMed  Google Scholar 

  • Thibault, K., Calvino, B., Rivals, I., Marchand, F., Dubacq, S., McMahon, S. B., et al. (2014). Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain. PLoS One, 9(3), e91297. doi:10.1371/journal.pone.0091297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas, D. A., McGowan, M. K., & Hammond, D. L. (1995). Microinjection of baclofen in the ventromedial medulla of rats: Antinociception at low doses and hyperalgesia at high doses. The Journal of Pharmacology and Experimental Therapeutics, 275(1), 274–284.

    CAS  PubMed  Google Scholar 

  • Thomas, D. A., Navarrete, I. M., Graham, B. A., McGowan, M. K., & Hammond, D. L. (1996). Antinociception produced by systemic R(+)-baclofen hydrochloride is attenuated by CGP 35348 administered to the spinal cord or ventromedial medulla of rats. Brain Research, 718(1–2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Ugarte, S. D., Homanics, G. E., Firestone, L. L., & Hammond, D. L. (2000). Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the beta3 subunit of the GABA(A) receptor. Neuroscience, 95(3), 795–806.

    Article  CAS  PubMed  Google Scholar 

  • Ulrich, D., & Bettler, B. (2007). GABA(B) receptors: Synaptic functions and mechanisms of diversity. Current Opinion in Neurobiology, 17(3), 298–303. doi:10.1016/j.conb.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S., Pozza, M. F., Lingenhoehl, K., Mosbacher, J., Lampert, C., Froestl, W., et al. (2003). N, N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: Novel allosteric enhancers of gamma-aminobutyric acidB receptor function. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 322–330. doi:10.1124/jpet.103.053074.

    Article  CAS  PubMed  Google Scholar 

  • Vallejo, R., Tilley, D. M., Williams, J., Labak, S., Aliaga, L., & Benyamin, R. M. (2013). Pulsed radiofrequency modulates pain regulatory gene expression along the nociceptive pathway. Pain Physician, 16(5), E601–E613.

    PubMed  Google Scholar 

  • Varani, A. P., Aso, E., Maldonado, R., & Balerio, G. N. (2014). Baclofen and 2-hydroxysaclofen modify acute hypolocomotive and antinociceptive effects of nicotine. European Journal of Pharmacology, 738, 200–205. doi:10.1016/j.ejphar.2014.05.039.

    Article  CAS  PubMed  Google Scholar 

  • von Heijne, M., Hao, J. X., Sollevi, A., & Xu, X. J. (2001). Effects of intrathecal morphine, baclofen, clonidine and R-PIA on the acute allodynia-like behaviours after spinal cord ischaemia in rats. European Journal of Pain, 5(1), 1–10. doi:10.1053/eujp.2000.0212.

    Article  Google Scholar 

  • Wang, X. L., Zhang, H. M., Chen, S. R., & Pan, H. L. (2007). Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. The Journal of Physiology, 579(Pt 3), 849–861. doi:10.1113/jphysiol.2006.126102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. L., Zhang, Q., Zhang, Y. Z., Liu, Y. T., Dong, R., Wang, Q. J., et al. (2011). Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neuroscience Letters, 490(2), 112–115. doi:10.1016/j.neulet.2010.12.038.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, R. A., Puil, E., Ries, C. R., Schwarz, S. K., Wall, R. A., Cooke, J. E., et al. (2012). GABA(B) receptor-mediated selective peripheral analgesia by the non-proteinogenic amino acid, isovaline. Neuroscience, 213, 154–160. doi:10.1016/j.neuroscience.2012.04.026.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Ma, W. L., Feng, Y. P., Dong, Y. X., & Li, Y. Q. (2002). Origins of GABA(B) receptor-like immunoreactive terminals in the rat spinal dorsal horn. Brain Research Bulletin, 58(5), 499–507.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Ma, R., Wang, Q., Jiang, P., & Li, Y. Q. (2015). Optoactivation of parvalbumin neurons in the spinal dorsal horn evokes GABA release that is regulated by presynaptic GABAB receptors. Neuroscience Letters, 594, 55–59. doi:10.1016/j.neulet.2015.03.050.

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast, M. R., & Mahmoudi, M. (2001). GABA mechanisms and antinociception in mice with ligated sciatic nerve. Pharmacology & Toxicology, 89(2), 79–84.

    Article  CAS  Google Scholar 

  • Zarrindast, M., Valizadeh, S., & Sahebgharani, M. (2000). GABA(B) receptor mechanism and imipramine-induced antinociception in ligated and non-ligated mice. European Journal of Pharmacology, 407(1–2), 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A. L., Hao, J. X., Seiger, A., Xu, X. J., Wiesenfeld-Hallin, Z., Grant, G., et al. (1994). Decreased GABA immunoreactivity in spinal cord dorsal horn neurons after transient spinal cord ischemia in the rat. Brain Research, 656(1), 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H. Y., Zhang, H. M., Chen, S. R., & Pan, H. L. (2007). Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate. Journal of Neurophysiology, 97(1), 871–882. doi:10.1152/jn.00964.2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Dua, S., & Gold, M. S. (2012). Inflammation-induced shift in spinal GABA(A) signaling is associated with a tyrosine kinase-dependent increase in GABA(A) current density in nociceptive afferents. Journal of Neurophysiology, 108(9), 2581–2593. doi:10.1152/jn.00590.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorn, S. H., & Enna, S. J. (1987). The GABA agonist THIP, attenuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology, 26(5), 433–437.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Lynn LeCount for her excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam J. Enna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Enna, S.J., McCarson, K.E. (2016). Targeting the GABAB Receptor for the Treatment of Pain. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_11

Download citation

Publish with us

Policies and ethics