Skip to main content

Abstract

After a short introduction, the general principles, features and limitations of the tomography from projections that form the core of SPECT, PET and CT modalities are reviewed. Mathematical concepts that rule the final image quality, such as ill-posed problem, noise correlation, streak artefacts, iterative algorithm or regularization methods, are explained using simple examples accessible to the non-physicist. Specificities of each modality (CT, MRI, SPECT and PET) are then presented and analyzed. In particular the use of anatomical information provided by CT and MRI is described in the case of hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitken AP, Giese D, Tsoumpas C, Schleyer P, Kozerke S, Prieto C, Schaeffter T. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Med Phys. 2014;41:012302.

    Article  CAS  PubMed  Google Scholar 

  2. Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol. 2015;17:264–76.

    Article  CAS  PubMed  Google Scholar 

  3. Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–5.

    Article  PubMed  Google Scholar 

  4. Asma E, Ahn S, Manjeshwar RM. Object size dependency of noise strength and correlation patterns for TOF and non-TOF PET. Symposium and Medical Imaging Conference (NSS/MIC), IEEE. 2011;3812–5.

    Google Scholar 

  5. Bai C, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50:1510–5.

    Article  Google Scholar 

  6. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose–effect relationship. J Nucl Med. 2005;46:99S–106.

    CAS  PubMed  Google Scholar 

  7. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance 1. Radiographics. 2004;24:1679–91.

    Article  PubMed  Google Scholar 

  8. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28:94–108.

    Article  PubMed  Google Scholar 

  9. Bellon EM, Haacke EM, Coleman PE, Sacco DC, Steiger DA, Gangarosa RE. MR artifacts: a review. AJR Am J Roentgenol. 1986;147:1271–81.

    Article  CAS  PubMed  Google Scholar 

  10. Bertero M, Boccacci P. Introduction to inverse problems in imaging. London: IOP Publishing Ltd; 1998.

    Book  Google Scholar 

  11. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging. 2003;30:588–96.

    Article  PubMed  Google Scholar 

  12. Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4:229–40.

    Article  Google Scholar 

  13. Buerger C, Aitken A, Tsoumpas C, King AP, Schulz V, Marsden P, Schaeffter T. Investigation of 4D PET attenuation correction using ultra-short echo time MR. IEEE Nucl Sci Symp Med Imaging Conf. 2011;3558–3561.

    Google Scholar 

  14. Burger M, Mennucci AC, Osher S, Rumpf M. Level set and PDE based reconstruction methods in imaging. Cham: Springer; 2013.

    Book  Google Scholar 

  15. Buzug TM. Computed tomography: from photon statistics to modern cone-beam CT. Berlin/Heidelberg: Springer; 2008.

    Google Scholar 

  16. Clackdoyle R, Defrise M. Tomographic reconstruction in the 21st century. IEEE Signal Process Mag. 2010;27:60–80.

    Article  Google Scholar 

  17. Conti M. Effect of randoms on signal-to-noise ratio in TOF PET. IEEE Trans Nucl Sci. 2006;53:1188–93.

    Article  Google Scholar 

  18. Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging. 2011;38:1147–57.

    Article  PubMed  Google Scholar 

  19. Defrise M, Gullberg GT. Image reconstruction. Phys Med Biol. 2006;51:R139.

    Article  PubMed  Google Scholar 

  20. Defrise M, Kinahan PE, Michel CJ. Image reconstruction algorithms in PET. In: Positron emission tomography. London: Springer; 2005. p. 63–91.

    Google Scholar 

  21. Delso G, Martinez-Möller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37:2804–12.

    Article  PubMed  Google Scholar 

  22. Doty FP, Friesenhahn SJ, Butler JF, Hink PL. X-ray and gamma-ray imaging with monolithic CdZnTe detector arrays. Proc SPIE. 1945. doi:10.1117/12.158756.

    Google Scholar 

  23. Fabbri C, Bartolomei M, Mattone V, Casi M, De Lauro F, Bartolini N, Gentili G, Amadori S, Agostini M, Sarti G. 90Y-PET/CT imaging quantification for dosimetry in peptide receptor radionuclide therapy: analysis and corrections of the impairing factors. Cancer Biother Radiopharm. 2015;30:200–10.

    Article  CAS  PubMed  Google Scholar 

  24. Fessler J. 2004 NSS/MIC statistical image reconstruction short course notes. http://web.eecs.umich.edu/~fessler/papers/files/talk/04/mic,notes.pdf. Accessed 15 Feb 2016.

  25. Ford K. Predicted 0+ level of Zr90. Phys Rev. 1955;98:1516.

    Article  CAS  Google Scholar 

  26. Frey EC, Tsui BM. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Nucl Sci Symp. 1996;2:1082–6.

    Google Scholar 

  27. Goldman LW. Principles of CT; radiation dose and image quality. J Nucl Med Technol. 2007;35:213–25.

    Article  PubMed  Google Scholar 

  28. Guillement JP, Jauberteau F, Kunyansky L, Novikov R, Trebossen R. On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction. Inv Prob. 2002;18:L11.

    Article  Google Scholar 

  29. Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ. Flat-Panel CT Volume: fundamental principles, technology, and applications. Radiographics. 2008;28:2009–22.

    Article  PubMed  Google Scholar 

  30. Gupta R, Grasruck M, Suess C, Bartling SH, Schmidt B, Stierstorfer K, Popescu S, Brady T, Flohr T. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol. 2006;16:1191–205.

    Article  PubMed  Google Scholar 

  31. Hakky M, Pandey S, Kwak E, Jara H, Erbay SH. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI. AJR Am J Roentgenol. 2013;201:369–77.

    Article  PubMed  Google Scholar 

  32. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. Am J Roentgenol. 2011;197:547–55.

    Article  Google Scholar 

  33. Heard S, Flux GD, Guy MJ, Ott RJ. Monte Carlo simulation of 90Y bremsstrahlung imaging. IEEE Nucl Sci Symp. 2004;6:3579–83.

    Google Scholar 

  34. Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36:93–104.

    Article  Google Scholar 

  35. Hornak JP. 2011. http://www.cis.rit.edu/htbooks/nmr/inside.htm. Accessed 21 Mar 2016.

  36. Hounsfield GN. Computerized transverse axial scanning (tomography): I. Description of system Br. J Radiol. 1973;46:1016–22.

    Article  CAS  Google Scholar 

  37. Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. Bellingham: SPIE; 2009.

    Google Scholar 

  38. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hutton BF. Recent advances in iterative reconstruction for clinical SPECT/PET and CT. Acta Oncol. 2011;50:851–8.

    Article  PubMed  Google Scholar 

  40. Hutton BF. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41:S3–16.

    Article  PubMed  Google Scholar 

  41. Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol. 2011;56:R85.

    Article  PubMed  Google Scholar 

  42. Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, De Camps J, Schran H, Chen T, Smith MC, Bouterfa H. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487)—a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging. 2003;30:510–8.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson OE, Johnson RG, Langer LM. Evidence for a 0+ first excited state in Zr 90. Phys Rev. 1955;98:1517.

    Google Scholar 

  44. Johnson TR. Dual-energy CT: general principles. Am J Roentgenol. 2012;199:S3–8.

    Article  Google Scholar 

  45. Jones T, Price P. Development and experimental medicine applications of PET in oncology: a historical perspective. Lancet Oncol. 2012;13:e116–25.

    Article  PubMed  Google Scholar 

  46. Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, Miuchi K, Nakahara T, Nagayoshi T, Nishimura H, Okada Y. Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl Inst Meth Phys Res Section A. 2007;580:1031–5.

    Article  CAS  Google Scholar 

  47. Kabuki S, Kimura H, Amano H, Nakamoto Y, Kubo H, Miuchi K, Kurosawa S, Takahashi M, Kawashima H, Ueda M, Okada T. Imaging study of a phantom and small animal with a two-head electron-tracking Compton gamma-ray camera. IEEE Nucl Sci Symp Conf Rec. 2010;30:2844–7.

    Google Scholar 

  48. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:R29–43.

    Article  PubMed  Google Scholar 

  49. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, Saini S. Techniques and applications of automatic tube current modulation for CT 1. Radiology. 2004;233:649–57.

    Article  PubMed  Google Scholar 

  50. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol. 2004;14:81–90.

    Article  PubMed  Google Scholar 

  52. Keereman V, Vandenberghe S, De Deene Y, Luypaert R, Broux T, Lemahieu I. MR-based attenuation correction for PET using an Ultrashort Echo Time (UTE) sequence. IEEE Nucl Sci Symp Conf Rec. 2008:4656–61.

    Google Scholar 

  53. LaCroix KJ, Tsui BM, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci. 1994;41:2793–9.

    Article  Google Scholar 

  54. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD pamphlet No. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57:151–62.

    Article  CAS  PubMed  Google Scholar 

  55. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, Walrand S. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36:1696.

    Article  PubMed  Google Scholar 

  56. Lhommel R, Van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Walrand S. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.

    Article  PubMed  Google Scholar 

  57. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin of North Am. 2009;47:27–40.

    Article  Google Scholar 

  58. Meeson S, Patel R, Golding S, Clinical Expansion of CT and Radiation Dose, D. Tack et al., editors. Radiation dose from multidetector CT, medical radiology. Diagnostic imaging. doi:10.1007/174_2012_541. Berlin/Heidelberg: Springer; 2012.

  59. Meirelles GS, Erdi YE, Nehmeh SA, Squire OD, Larson SM, Humm JL, Schöder H. Deep-inspiration breath-hold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med. 2007;48:712–9.

    Article  PubMed  Google Scholar 

  60. Miller M, Zhang J, Binzel K, Griesmer J, Laurence T, Narayanan M, et al. Characterization of the vereos digital photon counting PET system. J Nucl Med. 2015;56:434.

    Google Scholar 

  61. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703.

    Article  CAS  PubMed  Google Scholar 

  62. Morozov VA. Regularization methods for ill-posed problems. Boca Raton: CRC Press; 1993.

    Google Scholar 

  63. Morozov VA. Methods for solving incorrectly posed problems. New York: Springer Science & Business Media; 2012.

    Google Scholar 

  64. Morozov VA, Grebennikov AI. Methods for solution of Ill-posed problems: algorithmic aspects. Moscow: University Pres; 2005.

    Google Scholar 

  65. Murase K, Ishine M, Kataoka M, Itoh H, Mogami H, Iio A, Hamamoto K. Simulation and experimental study of respiratory motion effect on image quality of single photon emission computed tomography (SPECT). Eur J Nucl Med. 1987;13:244–9.

    CAS  PubMed  Google Scholar 

  66. Nayak TK, Brechbiel MW. 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med Chem. 2011;7:380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38:167–76.

    Article  PubMed  Google Scholar 

  68. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, Mageras GS, Schoder H, Vernon P, Squire O, Mostafavi H. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004;31:3179–86.

    Article  CAS  PubMed  Google Scholar 

  69. Novikov RG. An inversion formula for the attenuated X-ray transformation. Ark Mat. 2002;40:145–67.

    Article  Google Scholar 

  70. Nuyts J, De Man B, Fessler JA, Zbijewski W, Beekman FJ. Modelling the physics in the iterative reconstruction for transmission computed tomography. Phys Med Biol. 2013;58:R63–96.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. Am J Roentgenol. 2015;204:W384–92.

    Article  Google Scholar 

  72. Patino M, Fuentes JM, Singh S, Hahn PF, Sahani DV. Iterative reconstruction techniques in abdominopelvic CT: technical concepts and clinical implementation. Am J Roentgenol. 2015;205:W19–31.

    Article  Google Scholar 

  73. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, Krenning EP, Jamar F. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46:92S–8.

    CAS  PubMed  Google Scholar 

  74. Polycarpou I, Thielemans K, Manjeshwar R, Aguiar P, Marsden PK, Tsoumpas C. Comparative evaluation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med. 2011;25:643–9.

    Article  PubMed  Google Scholar 

  75. Press WH, Tuekolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C++. Cambridge University Press; 2007.

    Google Scholar 

  76. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    Article  CAS  PubMed  Google Scholar 

  77. Radon J, Parks PC (translator). On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imag. 1986;5:170–6.

    Google Scholar 

  78. Rault E, Vandenberghe S, Staelens S, Lemahieu I. Optimization of yttrium-90 bremsstrahlung imaging with Monte Carlo simulations. IFMBE Proc. 2009;22:500–4.

    Article  Google Scholar 

  79. Razifar P, Lubberink M, Schneider H, Långström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5:3. DOI:10.1186/1471-2342-5-3.

  80. Razifar P, Sandström M, Schnieder H, Långström B, Maripuu E, Bengtsson E, Bergström M. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM. BMC Med Imaging. 2005;5:5. DOI:10.1186/1471-2342-5-5.

  81. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphicand radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  82. Reyes M, Malandain G, Koulibaly PM, Ballester MA, Darcourt J. Respiratory motion correction in emission tomography image reconstruction. Medical image computing and computer-assisted intervention–MICCAI . Berlin/Heidelberg: Springer; 2005. p. 369–76.

    Google Scholar 

  83. Reyes M, Malandain G, Koulibaly PM, Gonzalez-Ballester MA, Darcourt J. Model-based respiratory motion compensation for emission tomography image reconstruction. Phys Med Biol. 2007;52:3579.

    Article  CAS  PubMed  Google Scholar 

  84. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J comput Assist Tomoqr. 2003;27:825–46.

    Article  Google Scholar 

  85. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  86. Segars WP, Tsui BMW. Effect of respiratory motion in CT-based attenuation correction in SPECT using different CT scanners and protocols. IEEE Nucl Sci Symp Conf Rec. 2005;4:2413–7.

    Article  Google Scholar 

  87. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65:318–27.

    Article  CAS  PubMed  Google Scholar 

  88. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.

    Article  CAS  PubMed  Google Scholar 

  89. Shibuya K, Saito H, Koshimizu M, Asai K. Outstanding timing resolution of pure CsBr scintillators for coincidence measurements of positron annihilation radiation. Appl Phys Express. 2010;3:086401.

    Article  CAS  Google Scholar 

  90. Siewerdsen JH, Daly MJ, Bakhtiar B, Moseley DJ, Richard S, Keller H, Jaffray DA. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys. 2006;33:187–97.

    Article  CAS  PubMed  Google Scholar 

  91. Silverman PM, Kalender WA, Hazle JD. Common terminology for single and multislice helical CT. Am J Roentgenol. 2001;176:1135–6.

    Article  CAS  Google Scholar 

  92. Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5–19.

    Article  PubMed  Google Scholar 

  93. Smyczynski MS, Gifford HC, Lehovich A, McNamara JE, Segars WP, Tsui BM, King MA. Impact of respiratory motion on the detection of small pulmonary nodules in SPECT imaging. IEEE Nucl Sci Symp Conf Rec. 2007;5:3241–5.

    CAS  Google Scholar 

  94. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    Article  CAS  PubMed  Google Scholar 

  95. Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N, Chessa F, Nuvoli S, Madeddu G. The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med. 2004;45:40–8.

    PubMed  Google Scholar 

  96. Starkschall G, Desai N, Balter P, Prado K, Luo D, Cody D, Pan T. Quantitative assessment of four-dimensional CT image acquisition quality. J Appl Clin Med Phys. 2007;8.

    Google Scholar 

  97. Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;18:102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stuart C. 1997. http://users.fmrib.ox.ac.uk/~stuart/thesis/chapter_2/chapter2.html. Accessed 21 Mar 2016.

  99. Suga K, Kawakami Y, Iwanaga H, Tokuda O, Matsunaga N. Automated breath-hold perfusion SPECT/CT fusion images of the lungs. Am J Roentgenol. 2007;189:455–63.

    Article  Google Scholar 

  100. Sun T, Mok GS. Techniques for respiration-induced artifacts reductions in thoracic PET/CT. Quant Imaging Med Surg. 2012;2:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Surti S, Karp JS. Advances in time-of-flight PET. Phys Med. 2016;32:12–22.

    Article  PubMed  Google Scholar 

  102. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.

    PubMed  Google Scholar 

  103. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. 2016;3:1–30.

    Article  Google Scholar 

  104. Van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011;56:6759.

    Article  PubMed  CAS  Google Scholar 

  105. Wagenaar D, van der Graaf ER, van der Schaaf A, Greuter MJ. Quantitative comparison of commercial and Non-commercial metal artifact reduction techniques in computed tomography. PLoS One. 2015;10, e0127932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26:99–113.

    Article  PubMed  Google Scholar 

  107. Walrand S. Bremsstrahlung SPECT/CT. In: Ahmadzadehfar H, Biersack HJ, editors. Clinical applications of SPECT-CT. Heidelberg: Springer; 2014.

    Google Scholar 

  108. Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, Pauwels S, Jamar F. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging. 2011;38:57–68.

    Article  CAS  Google Scholar 

  109. Walrand S, Hesse M, Demonceau G, Pauwels S, Jamar F. Yttrium-90-labeled microsphere tracking during liver selective internal radiotherapy by bremsstrahlung pinhole SPECT: feasibility study and evaluation in an abdominal phantom. EJNMMI Res. 2011;1:1186.

    Article  Google Scholar 

  110. Walrand S, Hesse M, Wojcik R, Lhommel R, Jamar F. Optimal design of Anger camera for bremsstrahlung imaging: Monte Carlo evaluation. Front Oncol. 2014;4:149.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Walrand S, Jamar F. Perspectives in nuclear medicine tomography: a physicist’s point of view. In: Giussani A, Hoeschen C, Giussani A, Hoeschen C, editors. Imaging in nuclear medicine. Heidelberg: Springer; 2013.

    Google Scholar 

  112. Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging. 2003;30:354–61.

    Article  CAS  PubMed  Google Scholar 

  113. Walrand S, Jamar F, van Elmbt L, Lhommel R, Bekonde EB, Pauwels S. 4-Step renal dosimetry dependent on cortex geometry applied to 90Y peptide receptor radiotherapy: evaluation using a fillable kidney phantom imaged by 90Y PET. J Nucl Med. 2010;51:1969–73.

    Article  PubMed  Google Scholar 

  114. Walrand S, van Elmbt L, Pauwels S. Quantitation in SPECT using an effective model of the scattering. Phys Med Biol. 1994;39:719.

    Article  CAS  PubMed  Google Scholar 

  115. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, Green AJ, Bouchet LG, Brill AB, Bolch WE, Sgouros G. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response–implications for radionuclide therapy. J Nucl Med. 2008;49:1884–99.

    Article  PubMed  Google Scholar 

  116. Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres. Eur J Nucl Med Mol Imaging. 2015;42:1202–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang Z, Choupan J, Sepehrband F, Reutens D, Crozier S. Tissue classification for PET/MRI attenuation correction using conditional random field and image fusion. Int J Mach Learn Comput. 2013;3:87.

    Article  Google Scholar 

  118. Yonezawa T, Koike M, Oishi Y, Iwanaga H. Application of breath-holding SPECT with high-speed-rotation technique in hepatic-function scintigraphy. Radiol Phys Technol. 2008;1:234–7.

    Article  PubMed  Google Scholar 

  119. Young IR. Significant events in the development of MRI. J Magn Reson Imaging. 2004;20:183–6.

    Article  PubMed  Google Scholar 

  120. Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics. 2011;31:835–48.

    Article  PubMed  Google Scholar 

  121. Yu L, Liu X, Leng S, Kofler JM, Ramirez-Giraldo JC, Qu M, Christner J, Fletcher JG, McCollough CH. Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med. 2009;1:65–84.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhu L, Bennett NR, Fahrig R. Scatter correction method for x-ray CT using primary modulation: theory and preliminary results. IEEE Trans Med Imaging. 2006;25:1573–87.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Walrand PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walrand, S., Hesse, M., Jamar, F. (2017). SPECT/CT, PET/CT and PET/MR Principles. In: Pacak, K., Taïeb, D. (eds) Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46038-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46038-3_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46036-9

  • Online ISBN: 978-3-319-46038-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics