Skip to main content

Nanoparticles for Radionuclide Imaging and Therapy: Principles

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Nanoparticles for radionuclide imaging and therapy have been deeply investigated the last ten years. According to their chemical composition, five families can be distinguished, including metal, carbon, polymers, and lipid- and nucleolipid-based nanoparticles. These nanoparticles were radiolabeled using mainly two strategies: (i) labeling of the nanostructure itself or (ii) labeling of the payload encapsulated inside the nanoparticles. This chapter will highlight recent contributions in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moghimi SM. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30.

    Article  CAS  PubMed  Google Scholar 

  2. Minchin RF, Martin DJ. Minireview: nanoparticles for molecular imaging—an overview. Endocrinology. 2010;151:474–81.

    Article  CAS  PubMed  Google Scholar 

  3. de Barros A, Tsourkas A, Saboury B, Cardoso V, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012;2:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem. 2012;23:671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kiessling F, Mertens ME, Grimm J, Lammers T. Nanoparticles for imaging: top or flop? Radiology. 2014;273:10–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stockhofe K, Postema J, Schieferstein H, Ross T. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals. 2014;7:392–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xing Y, Zhao J, Shi X, Conti PS, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomedicine Nanotechnol. 2014;2:1016.

    Google Scholar 

  9. Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4:399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:69–83.

    Article  CAS  PubMed  Google Scholar 

  11. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells. 2011;31:295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nyström AM, Wooley KL. The importance of chemistry in creating well-defined nanoscopic Embedded therapeutics: devices capable of the dual functions of imaging and therapy. Acc Chem Res. 2011;44:969–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318:162–3.

    Article  CAS  Google Scholar 

  15. Astefanei A, Núñez O, Galceran MT. Characterisation and determination of fullerenes: a critical review. Anal Chim Acta. 2015;882:1–21.

    Article  CAS  PubMed  Google Scholar 

  16. Dellinger A, Zhou Z, Connor J, Madhankumar A, Pamujula S, Sayes CM, Kepley CL. Application of fullerenes in nanomedicine: an update. Nanomed. 2013;8:1191–208.

    Article  CAS  Google Scholar 

  17. Partha R, Conyers JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine. 2009;4:261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuguo L, Xiaodong Z, Qingnuan L, Wenxin L. Radioiodination of C60 Derivative C60(OH)xOy. J Radioanal Nucl Chem. 2001;250:363–4.

    Article  Google Scholar 

  19. Yu-guo L, Xuan H, Riu-li L, Qing-nuan L, Xiao-dong Z, Wen-xin L. Synthesis of [14C] quincetone. J Radioanal Nucl Chem. 2005;265:127–31.

    Article  Google Scholar 

  20. Qingnuan L, Yan X, Xiaodong Z, Ruili L, Qieqie D, Xiaoguang S, Shaoliang C, Wenxin L. Preparation of 99mTc-C60(OH)x and its biodistribution studies. Nucl Med Biol. 2002;29:707–10.

    Article  PubMed  Google Scholar 

  21. Ji ZQ, Sun H, Wang H, Xie Q, Liu Y, Wang Z. Biodistribution and tumor uptake of C60(OH) x in mice. J Nanoparticle Res. 2005;8:53–63.

    Article  CAS  Google Scholar 

  22. Xu J-Y, Li Q-N, Li J-G, Ran T-C, Wu S-W, Song W-M, Chen S-L, Li W-X. Biodistribution of 99mTc-C60(OH)x in sprague–dawley rats after intratracheal instillation. Carbon. 2007;45:1865–70.

    Article  CAS  Google Scholar 

  23. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2:385–9.

    Google Scholar 

  24. Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci. 1999;96:5182–7.

    Google Scholar 

  25. Nikolić N, Vranješ-Ðurić S, Janković D, Ðokić D, Mirković M, Bibić N, Trajković V. Preparation and biodistribution of radiolabeled fullerene C 60 nanocrystals. Nanotechnology. 2009;20:385102.

    Article  PubMed  CAS  Google Scholar 

  26. Shultz MD, Duchamp JC, Wilson JD, et al. Encapsulation of a radiolabeled cluster Inside a fullerene cage, 177LuxLu(3 − x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc. 2010;132:4980–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shultz MD, Wilson JD, Fuller CE, Zhang J, Dorn HC, Fatouros PP. Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology. 2011;261:136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilson JD, Broaddus WC, Dorn HC, Fatouros PP, Chalfant CE, Shultz MD. Metallofullerene-nanoplatform-delivered interstitial brachytherapy improved survival in a murine model of glioblastoma multiforme. Bioconjug Chem. 2012;23:1873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diener MD, Alford JM, Kennel SJ, Mirzadeh S. (212)Pb@C(60) and its water-soluble derivatives: synthesis, stability, and suitability for radioimmunotherapy. J Am Chem Soc. 2007;129:5131–8.

    Article  CAS  PubMed  Google Scholar 

  30. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  31. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2010;2:85–120.

    Google Scholar 

  32. Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv. 2015;12:563–81.

    Article  CAS  PubMed  Google Scholar 

  33. McDevitt MR, Chattopadhyay D, Jaggi JS, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2:e907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007;48:1180–9.

    Article  CAS  PubMed  Google Scholar 

  35. Villa CH, McDevitt MR, Escorcia FE, Rey DA, Bergkvist M, Batt CA, Scheinberg DA. Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett. 2008;8:4221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47–52.

    Google Scholar 

  37. Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine. 2010;5:783–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu S-Y, An SSA, Hulme J. Current applications of graphene oxide in nanomedicine. Int J Nanomedicine. 2015;10(Spec Iss):9–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou X, Liang F. Application of graphene/graphene oxide in biomedicine and biotechnology. Curr Med Chem. 2014;21:855–69.

    Article  CAS  PubMed  Google Scholar 

  40. Byun J. Emerging frontiers of graphene in biomedicine. J Microbiol Biotechnol. 2015;25:145–51.

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.

    Article  CAS  PubMed  Google Scholar 

  42. Li J-L, Tang B, Yuan B, Sun L, Wang X-G. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013;34:9519–34.

    Article  CAS  PubMed  Google Scholar 

  43. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42:530–47.

    Article  CAS  PubMed  Google Scholar 

  44. Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater Deerfield Beach Fla. 2013;25:168–86.

    Article  CAS  Google Scholar 

  45. Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5:710–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, Theuer CP, Barnhart TE, Liu Z, Cai W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 2013;34:3002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi S, Yang K, Hong H, Chen F, Valdovinos HF, Goel S, Barnhart TE, Liu Z, Cai W. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials. 2015;39:39–46.

    Google Scholar 

  48. Chen L, Zhong X, Yi X, Huang M, Ning P, Liu T, Ge C, Chai Z, Liu Z, Yang K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials. 2015;66:21–8.

    Article  PubMed  CAS  Google Scholar 

  49. Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C. 2014;45:196–204.

    Google Scholar 

  50. Gupta R, Shea J, Scaife C, Shurlygina A, Rapoport N. Polymeric micelles and nanoemulsions as drug carriers: therapeutic efficacy, toxicity, and Drug Resistance. J Control Release. 2015;212:70–7.

    Article  CAS  PubMed  Google Scholar 

  51. Rapoport N, Gupta R, Kim Y-S, O’Neill BE. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: insight through intravital imaging. J Control Release. 2015;206:153–60.

    Article  CAS  PubMed  Google Scholar 

  52. Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM. Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:311–23.

    Article  CAS  PubMed  Google Scholar 

  53. Lanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, Wickline SA. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis. 2010;13:189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patel SK, Williams J, Janjic JM. Cell labeling for 19F MRI: new and improved approach to perfluorocarbon nanoemulsion design. Biosensors. 2013;3:341–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Temme S, Grapentin C, Quast C, et al. Noninvasive imaging of early venous thrombosis by 19F magnetic resonance Imaging with targeted perfluorocarbon nanoemulsions. Circulation. 2015;131:1405–14.

    Article  CAS  PubMed  Google Scholar 

  56. Lemaire L, Bastiat G, Franconi F, Lautram N, Duong Thi Dan T, Garcion E, Saulnier P, Benoit JP. Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO2 assessment. Eur J Pharm Biopharm. 2013;84:479–86.

    Article  CAS  PubMed  Google Scholar 

  57. Patel SK, Zhang Y, Pollock JA, Janjic JM. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol) Ether theranostic nanoemulsions—in vitro study. PLoS One. 2013. doi:10.1371/journal.pone.0055802.

  58. Vasudeva K, Andersen K, Zeyzus-Johns B, Hitchens TK, Patel SK, Balducci A, Janjic JM, Pollock JA. Imaging neuroinflammation in vivo in a neuropathic pain rat model with near-infrared fluorescence and 19F magnetic resonance. PLoS One. 2014. doi:10.1371/journal.pone.0090589.

  59. Wang Y-G, Kim H, Mun S, Kim D, Choi Y. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal 19F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy. Quant Imaging Med Surg. 2013;3:132–40.

    PubMed  PubMed Central  Google Scholar 

  60. Bae PK, Jung J, Lim SJ, Kim D, Kim S-K, Chung BH. Bimodal perfluorocarbon nanoemulsions for nasopharyngeal carcinoma targeting. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2013;15:401–10.

    Article  Google Scholar 

  61. Hu G, Lijowski M, Zhang H, et al. Imaging of Vx-2 rabbit tumors with ανβ3-integrin-targeted 111In nanoparticles. Int J Cancer. 2007;120:1951–7.

    Article  CAS  PubMed  Google Scholar 

  62. Fabiilli ML, Piert MR, Koeppe RA, Sherman PS, Quesada CA, Kripfgans OD. Assessment of the biodistribution of an [18F]FDG-loaded perfluorocarbon double emulsion using dynamic micro-PET in rats. Contrast Media Mol Imaging. 2013;8:366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15–34.

    Article  CAS  PubMed  Google Scholar 

  64. Bussy C, Ali-Boucetta H, Kostarelos K. Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc Chem Res. 2013;46:692–701.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, Ali S, Biris AS. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 2014;46:232–46.

    Article  CAS  PubMed  Google Scholar 

  66. Godwin H, Nameth C, Avery D, et al. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano. 2015;9:3409–17.

    Article  CAS  PubMed  Google Scholar 

  67. Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine Nanotechnol Biol Med. 2015. doi:10.1016/j.nano.2015.11.011.

    Google Scholar 

  68. Ema M, Gamo M, Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol. 2016;74:42–63.

    Article  CAS  PubMed  Google Scholar 

  69. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomed. 2015;10:321–41.

    Article  CAS  Google Scholar 

  70. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomed. 2015;10:299–320.

    Article  CAS  Google Scholar 

  71. Her S, Jaffray DA, Allen C Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. doi:10.1016/j.addr.2015.12.012.

  72. Singh M, Harris-Birtill DCC, Markar SR, Hanna GB, Elson DS. Application of gold nanoparticles for gastrointestinal cancer theranostics: a systematic review. Nanomedicine Nanotechnol Biol Med. 2015;11:2083–98.

    Article  CAS  Google Scholar 

  73. Zhao J, Lee P, Wallace M, Melancon M. Gold nanoparticles in cancer therapy: efficacy, biodistribution, and toxicity. Curr Pharm Des. 2015;21:4240–51.

    Article  CAS  PubMed  Google Scholar 

  74. Ferro-Flores G, Ocampo-García B, Santos-Cuevas C, María Ramírez F, Azorín-Vega E, Meléndez-Alafort L. Theranostic radiopharmaceuticals based on gold nanoparticles labeled with 177Lu and conjugated to peptides. Curr Radiopharm. 2015;8:150–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ferro-Flores G, Ocampo-García B, Santos-Cuevas C, Morales-Avila E, Azorín-Vega E. Multifunctional radiolabeled nanoparticles for targeted therapy. Curr Med Chem. 2013;21:124–38.

    Article  CAS  Google Scholar 

  76. Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm. 2010;395:324–30.

    Google Scholar 

  77. Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, Koch AE, Kotov NA, Wang X. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano. 2011;5:8967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Li J, Chen K, Zhang H, Cheng Z. Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials. 2013;34:2796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karmani L, Labar D, Valembois V, et al. Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging. 2013;8:402–8.

    Article  CAS  PubMed  Google Scholar 

  80. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Int Ed. 2014;53:156–9.

    Article  CAS  Google Scholar 

  81. Frigell J, García I, Gómez-Vallejo V, Llop J, Penadés S. 68Ga-labeled gold glyconanoparticles for exploring Blood–brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc. 2014;136:449–57.

    Article  CAS  PubMed  Google Scholar 

  82. Felber M, Bauwens M, Mateos JM, Imstepf S, Mottaghy FM, Alberto R. 99mTc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand. Chem – Eur J . 2015;21:6090–9.

    Article  CAS  PubMed  Google Scholar 

  83. Felber M, Alberto R. 99mTc radiolabelling of Fe3O4–Au core–shell and Au–Fe3O4 dumbbell-like nanoparticles. Nanoscale. 2015;7:6653–60.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Z, Liu Y, Jarreau C, Welch MJ, Taylor J-SA. Nucleic acid-directed self-assembly of multifunctional gold nanoparticle imaging agents. Biomater Sci. 2013;1:1055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Black KCL, Akers WJ, Sudlow G, Xu B, Laforest R, Achilefu S. Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale. 2014;7:440–4.

    Article  CAS  Google Scholar 

  86. Rambanapasi C, Barnard N, Grobler A, Buntting H, Sonopo M, Jansen D, Jordaan A, Steyn H, Zeevaart JR. Dual radiolabeling as a technique to track nanocarriers: the case of gold nanoparticles. Molecules. 2015;20:12863–79.

    Article  CAS  PubMed  Google Scholar 

  87. Luna-Gutiérrez M, Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, Jiménez-Mancilla N, De León-Rodríguez LM, Azorín-Vega E, Isaac-Olivé K. A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. J Mex Chem Soc. 2013;57:212–9.

    Google Scholar 

  88. Vilchis-Juárez A, Ferro-Flores G, Santos-Cuevas C, Morales-Avila E, Ocampo-García B, Díaz-Nieto L, Luna-Gutiérrez M, Jiménez-Mancilla N, Pedraza-López M, Gómez-Oliván L. Molecular targeting radiotherapy with cyclo-RGDfK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol. 2014;10:393–404.

    Article  PubMed  CAS  Google Scholar 

  89. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem. 2013;12:2694–702.

    Article  Google Scholar 

  90. Pérez-Campaña C, Gómez-Vallejo V, Martin A, Sebastián ES, Moya SE, Reese T, Ziolo RF, Llop J. Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst. 2012;137:4902–6.

    Google Scholar 

  91. Pérez-Campaña C, Gómez-Vallejo V, Puigivila M, Martín A, Calvo-Fernández T, Moya SE, Ziolo RF, Reese T, Llop J. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano. 2013;7:3498–505.

    Article  PubMed  CAS  Google Scholar 

  92. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    Article  CAS  Google Scholar 

  93. Ghobril C, Lamanna G, Kueny-Stotz M, Garofalo A, Billotey C, Felder-Flesch D. Dendrimers in nuclear medical imaging. New J Chem. 2012;36:310–23.

    Article  CAS  Google Scholar 

  94. Röglin L, Lempens EHM, Meijer EW. A synthetic “tour de force”: well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew Chem Int Ed Engl. 2011;50:102–12.

    Article  PubMed  CAS  Google Scholar 

  95. Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev. 2011;40:2673–703.

    Article  CAS  PubMed  Google Scholar 

  96. Ghai A, Singh B, Panwar Hazari P, Schultz MK, Parmar A, Kumar P, Sharma S, Dhawan D, Kumar Mishra A. Radiolabeling optimization and characterization of 68Ga labeled DOTA–polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot. 2015;105:40–6.

    Article  CAS  PubMed  Google Scholar 

  97. McNelles SA, Knight SD, Janzen N, Valliant JF, Adronov A. Synthesis, radiolabeling, and in vivo imaging of PEGylated high-generation polyester dendrimers. Biomacromolecules. 2015;16:3033–41.

    Google Scholar 

  98. Laznickova A, Biricova V, Laznicek M, Hermann P. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: radiolabeling and biodistribution studies. Appl Radiat Isot. 2014;84:70–7.

    Article  CAS  PubMed  Google Scholar 

  99. Kovacs L, Tassano M, Cabrera M, Zamboni CB, Fernández M, Anjos RM, Cabral P. Development of 177Lu-DOTA-dendrimer and determination of its effect on metal and Ion levels in tumor tissue. Cancer Biother Radiopharm. 2015. doi:10.1089/cbr.2014.1675.

    PubMed  Google Scholar 

  100. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon Emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces. 2015;7:19798–808.

    Article  CAS  PubMed  Google Scholar 

  101. Musyanovych A, Landfester K. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci. 2014;14:458–77.

    Article  CAS  PubMed  Google Scholar 

  102. Cahouet A, Denizot B, Hindré F, Passirani C, Heurtault B, Moreau M, Le Jeune J, Benoît J. Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and gamma counting. Int J Pharm. 2002;242:367–71.

    Article  CAS  PubMed  Google Scholar 

  103. Jestin E, Mougin-Degraef M, Faivre-Chauvet A, Remaud-Le Saëc P, Hindre F, Benoit JP, Chatal JF, Barbet J, Gestin JF. Radiolabeling and targeting of lipidic nanocapsules for applications in radioimmunotherapy. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharmacol IAR Sect Soc Radiopharm Chem Biol. 2007;51:51–60.

    CAS  Google Scholar 

  104. de Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int J Pharm. 2008;349:152–60.

    Article  PubMed  CAS  Google Scholar 

  105. Pereira MA, Mosqueira VCF, Vilela JMC, Andrade MS, Ramaldes GA, Cardoso VN. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2008;33:42–51.

    CAS  Google Scholar 

  106. Pereira MA, Mosqueira VCF, Carmo VAS, Ferrari CS, Reis ECO, Ramaldes GA, Cardoso VN. Biodistribution study and identification of inflammatory sites using nanocapsules labeled with (99m)Tc-HMPAO. Nucl Med Commun. 2009;30:749–55.

    Article  PubMed  Google Scholar 

  107. Vicente S, Goins BA, Sanchez A, Alonso MJ, Phillips WT. Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine. 2014;32:1685–92.

    Article  CAS  PubMed  Google Scholar 

  108. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015. doi:10.3389/fphar.2015.00286.

    PubMed  PubMed Central  Google Scholar 

  109. Boerman OC, Laverman P, Oyen WJ, Corstens FH, Storm G. Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res. 2000;39:461–75.

    Article  CAS  PubMed  Google Scholar 

  110. Goins BA. Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opin Med Diagn. 2008;2:853–73.

    Article  CAS  PubMed  Google Scholar 

  111. Phillips WT, Bao A, Sou K, Li S, Goins B. Radiolabeled liposomes as drug delivery nanotheranostics. In: Li C, Tian M, editors. Drug Delivery Applications of Noninvasive Imaging: Validation from Biodistribution to Sites of Action. Hoboken, NJ. 2013. p 252–67.

    Google Scholar 

  112. De Barros ALB, Mota LDG, Coelho MMA, Corrêa NCR, De Góes AM, Oliveira MC, Cardoso VN. Bombesin encapsulated in long-circulating pH-sensitive liposomes as a radiotracer for breast tumor identification. J Biomed Nanotechnol. 2015;11:342–50.

    Article  PubMed  CAS  Google Scholar 

  113. Ogawa M, Umeda IO, Kosugi M, Kawai A, Hamaya Y, Takashima M, Yin H, Kudoh T, Seno M, Magata Y. Development of 111In-labeled liposomes for vulnerable atherosclerotic plaque imaging. J Nucl Med. 2014;55:115–20.

    Article  CAS  PubMed  Google Scholar 

  114. Ogawa M, Uchino R, Kawai A, Kosugi M, Magata Y. PEG modification on 111In-labeled phosphatidyl serine liposomes for imaging of atherosclerotic plaques. Nucl Med Biol. 2015;42:299–304.

    Article  CAS  PubMed  Google Scholar 

  115. Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti–prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J Nucl Med. 2014;55:107–14.

    Article  CAS  PubMed  Google Scholar 

  116. Petersen AL, Henriksen JR, Binderup T, Elema DR, Rasmussen PH, Hag AM, Kjær A, Andresen TL. In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging. 2015;43:941.

    Google Scholar 

  117. Thukral DK, Dumoga S, Mishra AK. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv. 2014;11:771–91.

    Article  CAS  PubMed  Google Scholar 

  118. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–13.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5:151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJP, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target. 2002;10:607–13.

    Article  CAS  PubMed  Google Scholar 

  121. Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J. 2004;6:55–64.

    Article  PubMed Central  Google Scholar 

  122. Harivardhan Reddy L, Sharma RK, Chuttani K, Mishra AK, Murthy RSR. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release. 2005;105:185–98.

    Article  CAS  PubMed  Google Scholar 

  123. Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415:232–43.

    Article  CAS  PubMed  Google Scholar 

  124. Varshosaz J, Ghaffari S, Mirshojaei SF, et al. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res Int. 2013;2013:e136859.

    Google Scholar 

  125. Banerjee I, De K, Chattopadhyay S, Bandyopadhyay AK, Misra M. An easy and effective method for radiolabelling of solid lipid nanoparticles. J Radioanal Nucl Chem. 2014;302:837–43.

    Article  CAS  Google Scholar 

  126. Andreozzi E, Seo JW, Ferrara K, Louie A. A novel method to label solid lipid nanoparticles (SLNs) with 64Cu for positron emission tomography (PET) imaging. Bioconjug Chem. 2011;22:808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2006;24:1–16.

    Article  PubMed  CAS  Google Scholar 

  128. Benezra M, Hambardzumyan D, Penate-Medina O, et al. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia. 2012;14:1132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakao R, Schou M, Halldin C. Rapid metabolite analysis of positron emission tomography radioligands by direct plasma injection combining micellar cleanup with high submicellar liquid chromatography with radiometric detection. J Chromatogr A. 2012;1266:76–83.

    Article  CAS  PubMed  Google Scholar 

  130. Xiao W, Luo J, Jain T, Riggs JW, Tseng HP, Henderson PT, Cherry SR, Rowland D, Lam KS. Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer. Int J Nanomedicine. 2012;7:1587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, Zhang Y, Barnhart TE, Cai W, Gong S. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 2012;33:3071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release Off J Control Release Soc. 2013;166:1–9.

    Article  CAS  Google Scholar 

  133. Guo J, Hong H, Chen G, Shi S, Zheng Q, Zhang Y, Theuer CP, Barnhart TE, Cai W, Gong S. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials. 2013;34:8323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kao H-W, Chan C-J, Chang Y-C, Hsu Y-H, Lu M, Shian-Jy Wang J, Lin Y-Y, Wang S-J, Wang H-E. A pharmacokinetics study of radiolabeled micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in a colon carcinoma-bearing mouse model. Appl Radiat Isot. 2013;80:88–94.

    Article  CAS  PubMed  Google Scholar 

  135. Hong Y, Zhu H, Hu J, Lin X, Wang F, Li C, Yang Z. Synthesis and radiolabeling of (111)In-core-cross linked polymeric micelle-octreotide for near-infrared fluoroscopy and single photon emission computed tomography imaging. Bioorg Med Chem Lett. 2014;24:2781–5.

    Article  CAS  PubMed  Google Scholar 

  136. Jensen AI, Binderup T, Kumar EKP, Kjær A, Rasmussen PH, Andresen TL. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64. Biomacromolecules. 2014;15:1625–33.

    Article  CAS  PubMed  Google Scholar 

  137. Lesniak WG, Sikorska E, Shallal H, Azad BB, Lisok A, Pullambhatla M, Pomper MG, Nimmagadda S. Structural characterization and in vivo evaluation of β-hairpin peptidomimetics as specific CXCR4 imaging agents. Mol Pharm. 2015;12:941–53.

    Google Scholar 

  138. Seo JW, Ang J, Mahakian LM, et al. Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat glioblastoma. J Control Release. 2015;220(Part A):51–60.

    Article  CAS  PubMed  Google Scholar 

  139. Starmans LWE, Hummelink MAPM, Rossin R, Kneepkens ECM, Lamerichs R, Donato K, Nicolay K, Grüll H. 89Zr- and Fe-labeled polymeric micelles for dual modality PET and T1-weighted MR imaging. Adv Healthc Mater. 2015;4:2137–45.

    Article  CAS  Google Scholar 

  140. Shih Y-H, Peng C-L, Chiang P-F, Lin W-J, Luo T-Y, Shieh M-J. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int J Nanomedicine. 2015;10:7443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ruiz-de-Angulo A, Zabaleta A, Gómez-Vallejo V, Llop J, Mareque-Rivas JC. Microdosed lipid-coated (67)Ga-magnetite enhances antigen-specific immunity by image tracked delivery of antigen and CpG to lymph nodes. ACS Nano. 2016. doi:10.1021/acsnano.5b07253.

    PubMed  Google Scholar 

  142. You J, Zhao J, Wen X, Wu C, Huang Q, Guan F, Wu R, Liang D, Li C. Chemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J Control Release. 2015;202:40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guo J, Hong H, Chen G, Shi S, Nayak TR, Theuer CP, Barnhart TE, Cai W, Gong S. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron Emission tomography imaging. ACS Appl Mater Interfaces. 2014;6:21769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Petitjean A, Khoury RG, Kyritsakas N, Lehn J-M. Dynamic devices shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc. 2004;126:6637–47.

    Article  CAS  PubMed  Google Scholar 

  145. Tang C, Ulijn RV, Saiani A. Effect of glycine substitution on fmoc–diphenylalanine self-assembly and gelation properties. Langmuir. 2011;27:14438–49.

    Article  CAS  PubMed  Google Scholar 

  146. He C, Han Y, Fan Y, Deng M, Wang Y. Self-assembly of Aβ-based peptide amphiphiles with double hydrophobic chains. Langmuir. 2012;28:3391–6.

    Article  CAS  PubMed  Google Scholar 

  147. Ziserman L, Lee H-Y, Raghavan SR, Mor A, Danino D. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J Am Chem Soc. 2011;133:2511–7.

    Article  CAS  PubMed  Google Scholar 

  148. Ku T-H, Chien M-P, Thompson MP, Sinkovits RS, Olson NH, Baker TS, Gianneschi NC. Controlling and switching the morphology of micellar nanoparticles with enzymes. J Am Chem Soc. 2011;133:8392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dong H, Dube N, Shu JY, Seo JW, Mahakian LM, Ferrara KW, Xu T. Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide–PEG conjugates. ACS Nano. 2012;6:5320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chae PS, Gotfryd K, Pacyna J, et al. Tandem facial amphiphiles for membrane protein stabilization. J Am Chem Soc. 2010;132:16750–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Szilluweit R, Hoheisel TN, Fritzsche M, et al. Low-temperature preparation of tailored carbon nanostructures in water. Nano Lett. 2012;12:2573–8.

    Article  CAS  PubMed  Google Scholar 

  152. Méndez-Ardoy A, Guilloteau N, Di Giorgio C, Vierling P, Santoyo-González F, Ortiz Mellet C, García Fernández JM. β-cyclodextrin-based polycationic amphiphilic “click” clusters: effect of structural modifications in their DNA complexing and delivery properties. J Org Chem. 2011;76:5882–94.

    Article  PubMed  CAS  Google Scholar 

  153. McLaughlin CK, Hamblin GD, Sleiman HF. Supramolecular DNA assembly. Chem Soc Rev. 2011;40:5647.

    Article  CAS  PubMed  Google Scholar 

  154. Patwa A, Gissot A, Bestel I, Barthélémy P. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem Soc Rev. 2011;40:5844–54.

    Article  CAS  PubMed  Google Scholar 

  155. Rosemeyer H. Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials. Chem Biodivers. 2005;2:977–1063.

    Article  CAS  PubMed  Google Scholar 

  156. Barthélemy P. Nucleoside-based lipids at work: from supramolecular assemblies to biological applications. Comptes Rendus Chim. 2009;12:171–9.

    Article  CAS  Google Scholar 

  157. Allain V, Bourgaux C, Couvreur P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res. 2012;40:1891–903.

    Article  CAS  PubMed  Google Scholar 

  158. Gissot A, Camplo M, Grinstaff MW, Barthélémy P. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org Biomol Chem. 2008;6:1324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chabaud P, Camplo M, Payet D, Serin G, Moreau L, Barthélémy P, Grinstaff MW. Cationic nucleoside lipids for gene delivery. Bioconjug Chem. 2006;17:466–72.

    Article  CAS  PubMed  Google Scholar 

  160. Ceballos C, Prata CAH, Giorgio S, Garzino F, Payet D, Barthélémy P, Grinstaff MW, Camplo M. Cationic nucleoside lipids based on a 3-nitropyrrole universal base for siRNA delivery. Bioconjug Chem. 2009;20:193–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ceballos C, Khiati S, Prata CAH, Zhang X-X, Giorgio S, Marsal P, Grinstaff MW, Barthélémy P, Camplo M. Cationic nucleoside lipids derived from universal bases: a rational approach for siRNA transfection. Bioconjug Chem. 2010;21:1062–9.

    Article  CAS  PubMed  Google Scholar 

  162. Moreau L, Ziarelli F, Grinstaff MW, Barthélémy P. Self-assembled microspheres from f-block elements and nucleoamphiphiles. Chem Commun. 2006;21:661–1663.

    Google Scholar 

  163. Moreau L, Campins N, Grinstaff MW, Barthélémy P. A fluorocarbon nucleoamphiphile for the construction of actinide loaded microspheres. Tetrahedron Lett. 2006;47:7117–20.

    Article  CAS  Google Scholar 

  164. Phillips WT, Rudolph AS, Goins B, Timmons JH, Klipper R, Blumhardt R. A simple method for producing a technetium-99m-labeled liposome which is stable In Vivo. Int J Rad Appl Instrum B. 1992;19:539–47.

    Google Scholar 

  165. Petersen AL, Binderup T, Jølck RI, Rasmussen P, Henriksen JR, Pfeifer AK, Kjær A, Andresen TL. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Control Release. 2012;160:254–63.

    Article  CAS  PubMed  Google Scholar 

  166. Orocio-Rodríguez E, Ferro-Flores G, Santos-Cuevas CL, Ramírez Fde M, Ocampo-García BE, Azorín-Vega E, Sánchez-García FM. Two novel nanosized radiolabeled analogues of somatostatin for neuroendocrine tumor imaging. J Nanosci Nanotechnol. 2015;15:4159–69.

    Article  PubMed  CAS  Google Scholar 

  167. Abou DS, Thorek DLJ, Ramos NN, Pinkse MWH, Wolterbeek HT, Carlin SD, Beattie BJ, Lewis JS. 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res. 2013;30:878–88.

    Article  CAS  PubMed  Google Scholar 

  168. Arora G, Shukla J, Ghosh S, Maulik SK, Malhotra A, Bandopadhyaya G. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: a novel approach towards reduction of renal radiation dose. PLoS One. 2012;7, e34019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Barthélémy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kennel, S., Appavoo, A., Schulz, J., Barthélémy, P. (2017). Nanoparticles for Radionuclide Imaging and Therapy: Principles. In: Pacak, K., Taïeb, D. (eds) Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46038-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46038-3_22

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46036-9

  • Online ISBN: 978-3-319-46038-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics